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Abstract

Gas-liquid two-phase flows arise in pipelines, power plants, and process equipment where
reliable prediction of local flow parameters is required for design, control, and safety. Local
quantities such as phase volume fraction, phase velocity, and interfacial area are strongly affected
by flow regime transitions and operating conditions, which makes empirical correlations difficult
to generalize. High-fidelity computational fluid dynamics can resolve these fields, but the com-
putational cost prohibits their use in real-time applications or large parametric studies. Recent
progress in deep learning offers alternatives for learning low-cost surrogates directly from data
collected by numerical simulation and experimental sensors. This work evaluates the ability of
different deep learning architectures to infer local flow parameters from available measurements
under variable gas and liquid flow rates, fluid properties, and pipe inclinations. Convolutional,
recurrent, and attention-based models are trained on synthetically generated and experimen-
tally inspired data that span stratified, slug, and annular flow conditions. The study compares
prediction accuracy, robustness to measurement noise, and generalization to unseen operating
conditions, and examines how architectural choices affect the reconstruction of small-scale in-
terfacial features. Furthermore, the analysis explores the benefits of incorporating approximate
physical constraints during training. The results highlight consistent trends in the relative per-
formance of competing architectures and map regions in the operating space where data-driven
estimators remain reliable, providing guidance for selecting models in practical monitoring and
control systems.

1 Introduction

Gas-liquid two-phase flows appear in a wide range of industrial systems, including oil and gas production pipelines,
nuclear reactor coolant circuits, chemical reactors, and refrigeration loops [1]. In these systems, design margins,
operational safety, and efficiency depend on the ability to characterize local flow parameters such as phase volume
fraction, phase velocity, turbulence intensity, interfacial area concentration, and pressure fluctuations. These local
quantities control interfacial transfer of mass, momentum, and energy, and they are strongly influenced by flow
regime, geometry, and operating conditions. Even in simple geometries like horizontal and inclined pipes, the
complex interaction of buoyancy, inertia, surface tension, and wall friction yields a rich set of regimes, ranging from
stratified and intermittent flows to dispersed bubbles and annular films. Each regime exhibits different spatial and
temporal structures, which complicates the development of universal empirical correlations for local parameters.
Traditional modeling of gas—liquid two-phase flow relies on averaged conservation equations for each phase,
together with closure relations for interfacial momentum transfer, turbulence, and phase distribution [2]. Drift-flux
models and two-fluid models are widely used in one-dimensional system analysis, where the pipe cross-section
is represented by area-averaged quantities. For local analysis, methods such as direct numerical simulation of
interface-resolving equations and large-eddy simulations of Euler—Euler or Euler-Lagrange formulations have been
employed to resolve detailed fields. While these approaches offer high fidelity, their computational requirements
remain prohibitive for real-time estimation and online control across broad operating envelopes. The resulting gap
between high-fidelity modeling and practical monitoring motivates the development of reduced-order models and
data-driven surrogates that can approximate local fields from a limited set of accessible measurements.




Symbol Description Units

ke{g1} Phase index for gas (g) and liquid (1) -

g Local volume fraction of phase k -

Pk Density of phase k kgm >
Ug Velocity field of phase k ms~!
P Pressure field Pa
M, Interfacial momentum exchange term Nm™3

Table 1: Key physical quantities in the two-phase flow formulation.

Dimensionless num- Definition Physical role
ber
UL . . .
Reg Rex = ol Inertial vs. viscous forces in
phase k
U’L . .
Wey, Wey, = P Inertia vs. surface tension
o
U
Fr Fr=— Inertia vs. gravity
gL. . . .
Qg Cross-sectional average gas volume Regime classification and
fraction closure input
Inclination angle Geometric angle of pipe relative to Controls stratification and
horizontal secondary flows

Table 2: Non-dimensional parameters controlling regime transitions and interfacial structures.

On the experimental side, techniques such as wire-mesh sensors, electrical capacitance tomography, electrical
resistance tomography, gamma-ray tomography, and optical probes have enabled high-resolution measurements
of phase distribution and interface dynamics [3]. However, the mapping from the available sensor signals to
the underlying local flow parameters is often nonlinear, high-dimensional, and regime-dependent. Conventional
reconstruction algorithms may require strong prior assumptions about the spatial distribution or may rely on
regularization strategies that do not adapt well to changing flow conditions. At the same time, operators typically
measure only a small subset of possible signals, such as pressure gradients, differential pressures, and global void
fraction indicators, which further complicates the inversion from sparse measurements to fully resolved fields.

Deep learning offers a flexible framework for learning nonlinear mappings from measurements to flow parameters
directly from data, without explicit specification of functional forms. Convolutional architectures can exploit spatial
correlations in tomographic images, while recurrent and sequence models can exploit temporal correlations in sensor
signals. Attention-based architectures can learn to focus on informative subsets of input features, potentially
improving robustness under variable operating conditions [4]. Nevertheless, applying deep learning to gas—liquid
two-phase flow presents several challenges. The available data sets may be limited in size and biased toward
certain regimes. Changes in flow configuration and operating conditions can induce distribution shifts between
training and deployment. In addition, purely data-driven models may violate basic physical constraints such as
mass conservation, leading to inconsistent reconstructions and reduced extrapolation capability.

The present work investigates the performance of several deep learning architectures for estimating local flow
parameters in gas—liquid two-phase flow under variable conditions [5]. The focus is on the reconstruction of cross-
sectional fields of gas volume fraction, phase velocities, and derived quantities from synthetic sensor data generated
by high-fidelity simulations and simplified virtual measurement models. The study considers a range of super-
ficial velocities, fluid properties, and pipe inclinations that span multiple classical flow regimes. Convolutional
encoder—decoder networks, recurrent models with temporal convolutions or gated units, and attention-based trans-
formers are evaluated with respect to predictive accuracy, robustness to measurement noise, and generalization to
unseen operating conditions. In addition, the study investigates the impact of incorporating approximate physical
constraints into the learning objective, such as penalties on residuals of averaged conservation laws. By comparing
these approaches on a common benchmark, the analysis aims to clarify the strengths and limitations of modern
deep learning architectures in this application and to provide guidance for their integration with model-based
approaches in two-phase flow analysis and monitoring.

2 Governing Equations and Physical Modeling

The underlying physics of gas—liquid two-phase flow in pipes can be described at the continuum level by separate
conservation equations for each phase [6]. For a phase index k € {g,1}, representing gas and liquid, the volume
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Figure 1: Overall workflow: high-fidelity simulations and experiments generate local flow fields that are mapped to
synthetic and physical sensor signals. Deep networks trained with optional physics-based penalties infer local quantities
from measurements for online monitoring and control.

fraction ayg, density pg, and velocity field uy satisfy a mass conservation equation of the form

0

g (arpr) + V- ([Tarprur) =Tk, (1)
where 'y, denotes volumetric mass transfer between phases due to processes such as phase change or dissolution.
In many isothermal adiabatic gas—liquid flows without phase change, 'y is negligible and the equations reduce to
conservative forms with constant densities. The momentum balance can be written as

% (arprur) + V- ([8larprur ® ur) = —apVp+ V- (|9arTr) (2)

+ agprg + My, + S, (3)

where p is the pressure field, 7 is the viscous stress tensor in phase k, g is the gravitational acceleration, M
represents interfacial momentum exchange with the other phase, and S includes additional source terms such as
wall friction and turbulence modeling contributions. The coupling between the phases arises through the common
pressure field and the interfacial exchange terms, which depend on local interface geometry, relative velocity, and
turbulence.

In interface-resolving formulations such as the volume-of-fluid method, a single momentum equation is solved
with a variable phase indicator field, and surface tension forces are distributed over a finite thickness interface
region. The phase indicator satisfies an advection equation for the volume fraction field,

day + V- [10] (gu) = 0, (4)

ot
with oy = 1 — ay. In this setting, the local flow parameters of interest, such as gas volume fraction and phase
velocities, can be derived from the resolved fields. However, the spatial and temporal resolution required to capture
interfacial structures such as ligaments, droplets, and waves leads to fine computational grids and small time steps
governed by capillary and inertial constraints. Direct use of such simulations for repeated evaluation in design or
control remains computationally intensive, which motivates the development of surrogate models that approximate
these local fields [11].

For many system-level analyses, cross-sectional average quantities are used. One-dimensional two-fluid models
introduce area-averaged void fraction &, and phase velocities @, and ;, along the streamwise coordinate z. Under
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Figure 2: Relationship between continuum two-phase flow equations and the data-driven surrogate. Governing mass and
momentum balances are discretized to define residual operators that act on network predictions. These residuals enter
physics-based loss terms, encouraging consistency with conservation laws while the encoder—decoder network maps sensor

data to local fields.

Architecture Primary input type Main characteristics Typical advantage
Conv. encoder— Cross-sectional images / Strided convs, skip con- Accurate spatial re-
decoder low-res tomography nections, multiscale fea- constructions

tures

Temporal CNN

Sensor time series

1D convs over time, paral-
lel processing

Efficient capture of
local temporal pat-
terns

GRU / RNN Sequential probes, pres- Gated recurrence, hidden Long-term temporal
sures states correlations
Transformer Multi-sensor sequences Self-attention, learned fo- Robust to variable

Graph decoder

Mesh-based fields

cus on informative steps
Message passing on un-

temporal patterns
Flexible cross-section

structured meshes representation
Multi-branch  hy- Scalars + fields / se- Fuses global and local Combines global con-
brid quences streams in latent space straints with local
detail

Table 3: Deep learning architectures considered for local flow parameter estimation.

stationarity and suitable closure relations, the gas mass balance can be written as

e ()

(Aagpyug) =0,
where A is the pipe cross-sectional area. In these averaged models, closure correlations relate wall and interfacial
shear stresses to the mean velocities, and additional correlations approximate interfacial area concentration [12].
While these models are widely used, they do not provide direct access to local distributions within the cross-section
and they require calibration of regime-dependent closure coefficients. The uncertainties in these closures often
dominate the prediction error when operating away from calibrated conditions.

Local flow parameters can be defined as functions of space and time. For instance, the local gas volume fraction
field in a pipe of circular cross-section can be written as

ag = ag (137,60, 2, 1), (6)

where (r, ) are polar coordinates in the cross-section. For data-driven estimation, it is convenient to discretize this
field on a computational grid or an unstructured mesh, yielding discrete vectors that approximate the continuous
fields. Let oy € R™ denote the discrete void fraction at n spatial points, and correspondingly u, and w; for the
velocities. The goal of local estimation in the present context is to reconstruct these high-dimensional vectors from
a smaller set of sensor measurements s € R™, where typically m < n. The mapping from s to oy and wuy, is
governed implicitly by the underlying PDE system, the geometry, and the sensor placement.

Non-dimensional analysis helps organize the influence of operating conditions on flow structure. Consider
a characteristic length L such as the pipe diameter, a characteristic velocity U, and characteristic density and
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Figure 3: Numerical experiment pipeline: operating conditions are sampled in terms of superficial velocities, inclination,
and fluid properties, mapped to dimensionless groups that organize classical flow regimes. High-fidelity simulations generate
snapshots, which are processed by virtual sensors to emulate realistic measurements and then normalized and split into
training, validation, and test sets.

Scenario Split strategy Evaluation focus

Random split Mixed operating points in all sub- Interpolation performance
sets

Velocity hold-out Reserve high Uy or U, for testing Extrapolation in superficial

velocity

Inclination hold-out  Exclude extreme inclinations from Sensitivity to gravity orien-
training tation

Regime-based split Train on e.g. stratified, test on slug Cross-regime generalization

Noise-level split Train on low noise, test on high Robustness to sensor degra-
noise dation

Table 4: Data partitioning scenarios used to probe generalization behaviour.

viscosity scales [14]. The Reynolds number for phase k is

L
Rek = pkU ) (7)
1223
and the Weber number is
o pkU2L
Wek - 0'|15I ) (8)

where py is the dynamic viscosity and o is the surface tension. The Froude number characterizes the relative
importance of inertia to gravity and can be written as

Fr=—. (9)

Combinations of these dimensionless numbers, together with void fraction and pipe inclination, influence regime
transitions and interfacial structures. Local parameter estimation must remain reliable across variations in these
quantities, which generally modify the mapping from global measurements to local fields [16].

An alternative viewpoint emphasizes the statistical nature of turbulent two-phase flow. The local void fraction
field and velocities can be interpreted as random fields driven by stochastic fluctuations in interfacial position and
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Figure 4: Architectural variants for local flow estimation. Input measurements feed a hierarchy of models that exploit spatial
structure (convolutional encoder—decoders), temporal correlations (recurrent and temporal convolutional networks), adaptive
feature weighting (attention mechanisms), and unstructured meshes (graph-based decoders). A fused latent representation
is decoded to cross-sectional fields and derived quantities.

turbulence. Under ergodicity assumptions, ensemble averages over realizations can be replaced by time averages.
The spatial covariance of the void fraction field,

Co (1, 2) [17] = E [ag (@1) g (22) [18]] — @y (@1) @y (22) , (10)

describes spatial correlations that can be exploited by learning architectures [19]. Convolutional layers in deep net-
works implicitly assume some form of local translation invariance in these correlations, which may be approximately
valid in homogeneous directions of the flow. However, boundaries and gravity break full invariance, so model design
must account for inhomogeneous structures such as stratified interfaces near the bottom of a horizontal pipe.

To link PDE-based modeling with data-driven estimation, one can consider physics-informed loss terms or
constraints that penalize violations of conservation laws. For example, if &, and 4, are predicted fields from a
network, discrete residuals of the averaged continuity equation can be constructed on a numerical grid. Let Ruyass
denote a vector of residuals obtained by applying a finite-volume discretization operator to the predicted fields. A
physics-based penalty can then be defined as

jphys = H|201Rmas5||§ +)‘HRmomH§v (11)

where Ruyom are momentum residuals and A is a weighting factor. This term can be combined with data misfit
terms during training in order to encourage predictions that respect global conservation constraints, potentially
improving generalization to conditions not represented in the training set.

The physical modeling perspective thus provides the context and constraints under which deep learning surro-
gates operate. While fully resolving the governing equations is often too costly for real-time applications, insights
from these equations about invariants, symmetries, scale separation, and parameter dependencies can be embed-
ded into network architectures, normalization strategies, and loss functions. The following sections build on these
foundations to formulate deep learning models for local parameter estimation and to design numerical experiments
that evaluate their performance under varying operating conditions [21].
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Loss component Representative form Role in training Tuning knob
Data fidelity Laata = %Ewpﬂg}(p) —y®3 Match predicted and ref- Weights w,,
erence fields

Mass residual HRmassH% Encourage discrete con- Physics weight
tinuity
Momentum residual || Rumom ||3 Promote momentum Multiplier A
balance
Regularization Q(0) (e.g. weight decay) Control overfitting Decay factor
Bound penalties Soft constraints on ay € [0,1], Enforce physical ranges Penalty strength
k>0

Table 5: Main loss components and their roles in the optimization problem.

3 Deep Learning Architectures for Local Flow Estimation

The task of local flow parameter estimation can be formulated as a supervised learning problem. Let s € R™ denote
the vector of sensor measurements, which may include pressure drops, differential pressures across segments, void
fraction indicators, and potentially low-resolution tomographic images or time series from local probes. Let y € R?
denote the target vector containing discretized local flow parameters, such as the gas volume fraction field ay,
phase velocities u, and w;, and interfacial area concentration. The data set consists of pairs (s;,y;) for samples
indexed by ¢ = 1,..., N, generated from numerical simulations or experiments under different operating conditions.

A deep learning model approximates a nonlinear mapping
fo: R™ — R% (12)

parametrized by network weights and biases collected in 8. The objective is to find 8 that minimizes a suitable

empirical risk over the data set, while providing robust generalization to new inputs.
A standard choice for regression tasks is the mean-squared error loss. Defining the predicted output for sample

i1 as |22] ¥; = fo (si), the data fidelity loss can be expressed as

N
1 N 2
Lyisy = NZH%‘ —¥ill>- (13)
=1

In practice, the vector y, may be composed of multiple physical fields with different scales and physical units, so
normalization and weighting strategies are applied. Let P denote the number of distinct target components, for

instance void fraction and phase velocities, and decompose y, into subvectors yz(-p ) with corresponding predictions
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Figure 6: Schematic view of model performance across operating conditions. Errors remain small for interpolation within
the training envelope but grow when gas velocity or inclination deviate significantly, altering flow regimes and interfacial
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@EP ). A weighted loss can be written as

2

: (14)

1 ZN ZP ® . ®
— ~ P p
Edata - ﬁ - wp H [23]y1 - yz 9

i=1 p=1

where the weights w,, control the relative importance of each component in training.

Convolutional neural networks are well suited to reconstructing spatial fields from image-like inputs. When
the sensors provide cross-sectional tomographic images, such as low-resolution void fraction maps, a convolutional
encoder—decoder architecture can be used to infer higher-resolution fields. Let X € RTXWXC represent an input
tensor with spatial dimensions H x W and C channels, and let Y € RH *W'%C" represent the output tensor of
local parameters on a potentially finer grid. A convolutional layer with kernel weights K® and bias b" computes

2 = 6 (conv (X, KO) 24 +50), (15)

where ¢ is a nonlinear activation function, such as a rectified linear unit, and X @ is the input feature map at layer [.
In an encoder—decoder structure, downsampling operations reduce spatial resolution while increasing channel depth,
and upsampling operations reconstruct the original or higher resolution. Skip connections between corresponding
encoder and decoder levels preserve multiscale information and help reconstruct fine interfacial structures such as
thin films and small bubbles.

When sensor data are primarily temporal, for example pressure signals and void fraction measurements collected
at fixed locations along the pipe, recurrent architectures can exploit temporal correlations. Let s;; denote the
feature vector at time index ¢ for sample i. A gated recurrent unit layer with hidden state h; can be written in



Case Noise model Relative standard de- Purpose

viation
Clean 5; = sfme 0% Baseline accuracy
Low noise 5 =s""+¢; 1-2% of s§™° Mild  measurement
uncertainty
Moderate noise Additive Gaussian -+ small 5% range Typical experimental
multiplicative term levels
High noise Strong additive noise on all > 10% range Stress-test  robust-
channels ness
Mismatched Train on clean, test on noisy  Varies Diagnose overfitting

to ideal data

Table 6: Sensor noise configurations used in robustness experiments.

Metric Symbol Type Interpretation

Mean-squared error ~ MSE Pointwise regression Penalizes large local
deviations

Mean-absolute error MAE Pointwise regression Robust to outliers

Normalized error - Scale-adjusted Compares across
fields / units

Spatial correlation p(x) Structural Agreement of spatial
patterns

Integral quantity er- — Scalar summary Error in a4, Ap, etc.

ror

Conservation resid- — Physics consistency Mass / momentum

ual balance satisfaction

Table 7: Performance metrics used for quantitative comparison of models.

terms of update and reset gates,
zZt =0 (I25lest + Uzhtfl + bz) s
g (Wrst + Urht—l + br) )
hy = tanh (R6|W,s; 4+ U, (14 © hy_1) + by)
hi=(1-2)0hi—1+2: 0 hy,

fi
=)

T

)
)
18)
)

—
=)

where o denotes the logistic sigmoid, ® is the elementwise product, and W and U matrices are trainable parameters
[27]. The final hidden state, or an aggregation over time, can be used as a latent representation from which local flow
fields are decoded using fully connected or convolutional layers. Temporal convolutions provide an alternative with
parallelizable operations by applying one-dimensional convolutions across the time axis, capturing local temporal
patterns in the signals.

Attention-based architectures extend this idea by enabling the model to learn pairwise interactions between
time steps or spatial locations. For a sequence of embedded inputs e;, the self-attention mechanism constructs
queries, keys, and values,

Qt = WQet7 (20)
kt = WKet, (21)
vy = Wyey, (22)

and computes attention weights

28] exp (q/ kv /v/dy)
S exp (g kj/Vdi) '

Aty =
with output representations [29]
oy = Z Qg Vs (24)
t/

This mechanism allows the network to focus adaptively on informative time steps or sensor channels, which may
be important in flows where intermittent structures such as slugs and large waves dominate the signals.



Method

Ensemble of net-
works

MC dropout
Gaussian likelihood

Temperature scaling

Reliability analysis

Uncertainty type Output Extra cost

Epistemic Sample mean and vari- High (multiple
ance fields models)

Epistemic + Stochastic forward-pass Moderate

aleatoric statistics

Aleatoric Per-pixel variance pa- Low
rameter

Calibration Rescaled predictive Negligible
spread

Diagnostic Coverage vs. nominal Post-processing
plots only

Table 8: Approaches for quantifying and calibrating predictive uncertainty.

Architecture

Conv. encoder—
decoder

Temporal CNN /
GRU

Transformer

Physics-informed
variant

Main strengths

Accurate cross-sectional recon-
structions in seen regimes; effi-
cient inference

Captures slug signatures and in-
termittent dynamics from time
series

Learns to focus on informative
events; good with multi-sensor
signals

Better global conservation and
integral quantities in extrapola-
tion

Main limitations

Interface  smoothing;
reduced extrapolation
fidelity

Sensitive to sequence
length and unseen fre-
quencies

Higher computational
cost; attention degra-
dation under heavy
noise

May trade local detail
for constraint satisfac-
tion

Small-capacity
model

More stable in low-data regimes Higher bias; limited

representation of com-
plex structures

Table 9: Qualitative comparison of architectural behaviour across operating conditions.

Graph-based architectures are also relevant because computational meshes for local fields are often unstruc-
tured. A mesh can be represented as a graph with nodes corresponding to spatial locations and edges connecting
neighboring cells. A graph convolution layer can update node features h; according to

rY =g [Woh! + 3" wih{ + b [30] (25)

JEN (@)
where N (i) denotes the set of neighbors of node i. Such layers can approximate discrete diffusion and propagation
of information along the mesh, aligning well with the physical couplings in discretized PDE systems. In the
present study, graph convolutions are used to post-process latent representations into fields defined on irregular
cross-sectional meshes for some configurations.
Regardless of architecture, the optimization problem solved during training can be expressed as

min Laata (6) 31 + 5Tpnys (6) + 2(6). (26)

where [ controls the contribution of physics-based penalties and 2 denotes regularization terms such as weight
decay [32]. Stochastic gradient-based methods are employed to approximate solutions to this optimization problem.
At each iteration, a mini-batch of samples is drawn and gradients of the loss with respect to 8 are estimated using
backpropagation. The parameters are updated according to

6+ — 0% — 5, Vor (6, (27)

with learning rate 7, and stochastic gradient estimate ﬁgﬁ. Learning rate schedules and normalization layers are
selected to ensure stable training across the range of operating conditions [33].

From a linear algebra perspective, the forward pass of a deep network can be viewed as a composition of affine
transformations and elementwise nonlinearities. For a fully connected layer with weight matrix W and bias
vector b(l), the operation on an input vector hrY is

RU+D — (W(l)h(l) + b(l)) . (28)
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When stacking many such layers, the overall mapping from inputs to outputs can, in principle, approximate
high-dimensional nonlinear functions with controlled complexity. Convolutional layers replace dense matrices with
structured sparse operators that share weights spatially, which reduces the number of parameters and encodes a
form of translational invariance [34]. The expressivity of the architectures considered here is governed by depth,
width, and kernel supports, balanced against the amount of available data and the risk of overfitting.

In the specific context of gas—liquid two-phase flow, the relevant architectures must capture both local spatial
patterns and global context. Stratified flows feature large-scale separation between phases with comparatively
smooth interfaces, whereas slug and churn flows exhibit three-dimensional structures that can be challenging to
reconstruct from sparse measurements. To address this, multi-branch architectures are considered, where one
branch processes global features such as overall pressure drop and bulk flow rates through fully connected layers,
and another branch processes spatial or temporal sensor fields through convolutions or recurrent units. The outputs
of these branches are concatenated in a latent space and decoded into local parameter fields, allowing the model
to combine local and global information [35]. The following section describes how data sets are generated and how
these architectures are instantiated and trained for quantitative evaluation.

4 Numerical Experiments and Data Generation

A central component of the evaluation is the construction of data sets that span a representative range of flow
conditions and regimes. High-fidelity numerical simulations are used as a primary source of local flow fields, sup-
plemented by simplified virtual measurement models that emulate plausible sensor configurations. The simulations
are based on a two-fluid or volume-of-fluid formulation of incompressible gas-liquid flow in pipes with circular
cross-section. For each configuration, gas and liquid superficial velocities, pipe inclination angles, and fluid prop-
erties are sampled over predefined ranges chosen to cover stratified, slug, and annular flow conditions. Steady and
statistically steady unsteady simulations are conducted until the flow reaches a regime that exhibits stationary
statistical properties, after which snapshots of the local fields are recorded at specified time intervals [36].

The computational domain is discretized using either structured or unstructured meshes with sufficient res-
olution to capture key interfacial features. Time integration employs schemes that satisfy stability conditions
associated with capillary and inertial time scales. For example, the time step At is constrained by a Courant
number condition of the form

CFL =

o (B

) < CFLuax, (29)

and, in interface-resolving simulations, by a capillary time step condition [38]

A?)
At < cgy/ P22 (30)

g

with typical constants determined from stability analysis [39]. The resulting simulation data provide sequences of
void fraction, velocity, and pressure fields over time.

To generate training inputs that resemble practical measurements, virtual sensors are placed in the computa-
tional domain. For instance, cross-sectional void fraction distributions can be integrated along chords to emulate
gamma-ray or electrical tomography signals. The integrated signal along chord index j can be written as

1
= | as@ polar (31)

J J

Sj:

where C; denotes the path of the chord and L; its length. Pressure sensors located along the pipe measure local or
averaged pressure values, which are derived from the simulated pressure field and phase distributions. Differential
pressures between specified locations approximate common instrumentation used in industrial pipelines. These
virtual sensors are arranged in configurations that vary in density and coverage, allowing assessment of how sensor
layout influences the identifiability of local parameters.

Measurement noise is modeled to reflect realistic uncertainties. Additive Gaussian noise with specified standard
deviation is applied to each sensor channel, and, for some experiments, multiplicative noise components are added
to reflect calibration uncertainties [41]. If s denotes a noise-free simulated signal, the noisy measurement is
defined as

5; = Sg-rue + €5, (32)

where ¢€; is drawn from a normal distribution with zero mean and variance 0]2- proportional to the magnitude of
the signal. In experiments involving robustness analysis, noise levels are varied up to levels representing several
percent of the signal magnitude, and networks are trained and evaluated at multiple noise intensities.
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For data-driven models, normalization of inputs and outputs is essential. Sensor signals are standardized to
zero mean and unit variance based on statistics computed from the training set. Local field quantities such as
void fraction and velocities are scaled to fixed ranges, for example by mapping void fraction to the interval [0, 1]
and velocities to nondimensional forms using characteristic velocity scales. Let pu, and o, denote the mean and
standard deviation vectors of the sensor data in the training set. Normalized inputs are computed as

ghorm |42|S — “87 (33)
O
with analogous transformations for outputs. These transformations are inverted when interpreting predictions in
physical units.

The data set is partitioned into three subsets for training, validation, and testing. The partitioning strategy plays
an important role in assessing generalization to unseen conditions. In one scenario, random sampling is used so that
all operating conditions appear across subsets, and the test set primarily reflects interpolation performance [43]. In
another scenario, specific ranges of superficial velocities, inclination angles, or fluid properties are withheld entirely
from training and used only for testing, thereby probing extrapolation across operating conditions. Flow-regime-
based splits are also considered, in which networks are trained on selected regimes and evaluated on others. These
splitting strategies probe whether the architectures learn regime-specific or more generalizable representations.

The network architectures introduced previously are instantiated with hyperparameters such as depth, width,
kernel size, and latent dimension. For convolutional encoder—decoder models, multiple depth levels are used, with
downsampling via strided convolutions [44]. The number of filters per layer increases with depth in the encoder and
decreases symmetrically in the decoder. Activation functions, normalization layers, and dropout rates are chosen
based on preliminary experiments that check training stability and avoid overfitting. Recurrent and attention-based
models are configured with sequence lengths corresponding to windows of sensor data, selected to capture several
characteristic time scales of the flow, such as slug passage periods or wave propagation times.

Training is performed using mini-batch stochastic optimization. The batch size is chosen to balance compu-
tational efficiency and gradient estimation variance. Learning rates and schedules, including constant, stepwise,
and cosine annealing strategies, are investigated [45]. Gradient clipping is applied in some configurations to mit-
igate occasional instabilities arising from rare high-gradient samples. Early stopping based on validation loss is
employed to determine the number of training epochs and to avoid overfitting, particularly in parameter ranges
with relatively sparse data. Checkpoints of network parameters at different epochs are stored for later analysis of
convergence behavior and for ensemble-based uncertainty quantification.

As a final ingredient, physics-based penalties and constraints are incorporated for selected models. For example,
the predicted void fraction and velocity fields are inserted into discrete mass and momentum balance equations to
compute residuals [46]. These residuals are included in the loss function with tunable weights, as described earlier.
In some configurations, constraints enforcing bounds on void fraction in the range [0, 1] and enforcing non-negativity
of predicted turbulent kinetic energy are implemented via appropriate activation functions or penalty terms. The
comparative evaluation across models with and without such physics-based components allows assessment of their
impact on accuracy and robustness across varying flow conditions.

5 Results and Discussion

The performance of the deep learning architectures is assessed using several quantitative metrics computed on
the test data sets. For each predicted local field, the mean-squared error and mean-absolute error relative to the
reference high-fidelity solution are evaluated. Let g; ; denote the predicted value of component j of sample ¢ and
Y;,; the corresponding reference value. The mean-squared error for a given field is defined as [47]

d
MSE = — ZZ Jig —vii) s (34)
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and the mean-absolute error is defined analogously. To interpret performance across fields with different scaling,
normalized errors are computed by dividing by the variance of the reference field. Spatial correlation coefficients
between predicted and reference fields are also calculated to capture structural agreement. For scalar summary
quantities derived from the fields, such as cross-sectional averaged void fraction or pressure drop, relative errors
are reported [48].

In scenarios where the training and test sets share the same ranges of operating conditions, the architectures
demonstrate varying levels of interpolation performance. Convolutional encoder—decoder models tend to achieve
low errors in reconstructing cross-sectional void fraction distributions when supplied with sufficient tomographic
input information. They capture primary features such as stratified interfaces, core—annular structures, and gross
slug shapes. However, they sometimes smooth sharp interfacial regions and underpredict small-scale structures
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such as droplets and ligaments, particularly when trained with strong regularization or when the training data lack
high-resolution interfacial detail. Multi-branch architectures that combine global scalar inputs with image-based
branches often yield improved performance on integral quantities while maintaining comparable local field accuracy.

Recurrent and temporal convolutional models provide advantages when temporal sensor sequences are available
[49]. For flows with pronounced intermittent structures, such as slug flow, these models learn temporal signatures
that correlate with phase distribution patterns. For example, the passage of a gas slug produces characteristic
fluctuations in differential pressure and void fraction signals that the network can associate with particular cross-
sectional distributions. Attention-based models further refine this capability by assigning higher weights to time
steps containing informative fluctuations and lower weights to relatively quiescent periods. Quantitative results
show that attention-based sequence models reduce errors in predicting the spatial extent and position of slugs along
the pipe under conditions that match the training data distribution.

The evaluation across architectures also considers sensitivity to measurement noise [50]. For each noise level
configuration, models are trained and tested on data with the same noise statistics, and, in additional experiments,
models trained on noiseless data are applied to noisy test data. As noise increases up to several tens of % of the
signal standard deviation, models without explicit noise handling exhibit a gradual increase in error and a tendency
to overfit noise patterns when trained on small data sets. Architectures that include explicit regularization, such
as dropout and weight decay, and those trained with augmentations that randomly perturb sensor signals, display
improved robustness. In attention-based models, noise can degrade the reliability of attention weights, causing the
model to focus on spurious fluctuations. This effect is mitigated by input normalization, smoothing of attention
distributions, and training strategies that expose the model to a range of noise levels.

An important aspect of the evaluation is generalization to operating conditions not represented in the training
set [51]. When models trained at lower gas superficial velocities are tested at higher velocities that produce more vig-
orous interfacial structures, prediction errors for all architectures increase. Convolutional encoder—decoder models
trained on regimes with relatively smooth interfaces may underpredict void fraction fluctuations and over-smooth
structures in more turbulent regimes. Sequence-based models that rely on temporal patterns may misinterpret
high-frequency fluctuations if such patterns did not appear in the training data. Architectures augmented with
physics-based penalties show somewhat improved extrapolation performance in these scenarios. By penalizing vi-
olations of global mass conservation, these models tend to maintain more accurate overall void fraction even when
local structures differ from training examples, although detailed interfacial patterns remain difficult to reconstruct
[52].

The effects of pipe inclination and gravity orientation provide another test of generalization. Networks trained
primarily on horizontal configurations are evaluated on inclined flows where stratification patterns shift and
buoyancy-induced secondary flows change phase distribution in the cross-section. Architectures that rely heavily
on spatial symmetries learned from horizontal configurations may not generalize directly. Introducing inclination
angles as additional input features and including a subset of inclined cases in training improves performance but
does not fully eliminate errors at extreme inclinations. The sensitivity of intermediate network representations
to inclination suggests that embedding appropriate rotational or reflectional invariances into the architecture, or
using coordinate transformations aligned with gravity, could further improve generalization.

From a physics perspective, an informative diagnostic is the evaluation of conservation law residuals on the
predicted fields [53]. For each predicted void fraction and velocity field, discrete mass and momentum balance
residuals are computed using finite-volume operators. Aggregate measures of residual magnitude, such as volume-
integrated squared residuals, are used to quantify the degree to which predictions satisfy the governing equations.
Models trained with physics-based penalties exhibit systematically lower residual magnitudes on both training and
test data, indicating that they have internalized some aspects of the conservation structure. However, reductions in
residuals do not always directly translate into lower pointwise prediction errors, particularly in strongly nonlinear
regimes where multiple local configurations can satisfy approximate conservation. Balancing data fidelity and
residual minimization remains a design choice that influences both accuracy and physical consistency [54].

The computational cost of each architecture is also characterized, including training time and inference time per
sample. Convolutional encoder—decoder models with moderate depth generally offer favorable trade-offs, achieving
reliable accuracy with inference times suitable for near real-time applications on modern hardware. Sequence
models and transformers introduce additional computational cost that scales with sequence length and model
width. Graph-based decoders incur overhead from sparse matrix operations on unstructured meshes, but benefit
from mesh flexibility. For applications where latency is critical, such as online monitoring or control, architectures
with fewer parameters or compressed versions of larger models may be preferred, even at the expense of some
accuracy. Techniques such as model pruning, quantization, and knowledge distillation are potential strategies for
reducing computational load while retaining predictive performance [55].

The spatial structure of prediction errors provides further insight into model behavior. Error fields often
show concentration near interfaces, especially in regions with steep gradients or rapidly changing topology. In
stratified regimes, errors may be largest near the contact line where the liquid film meets the pipe wall and gas
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core, reflecting sensitivity to small geometric changes. In slug flow, errors can be localized near the front and tail
of slugs, where velocity and void fraction gradients are strong. In annular flow, thin liquid films on the wall and
entrained droplets are challenging to reconstruct, leading to underprediction of film thickness and misrepresentation
of droplet concentration [56]. These patterns highlight the need for architectures and loss functions that pay
particular attention to interfacial regions, possibly through adaptive weighting or specialized sub-networks focused
on interface refinement.

Finally, the interaction between data set size and model capacity is examined. As training data are reduced,
larger models tend to overfit and show increased variance in test performance across different initializations. Smaller
models with fewer parameters may generalize better in low-data regimes, albeit with higher bias. Physics-based
penalties and regularization techniques can partially compensate for limited data, effectively injecting prior knowl-
edge into the learning process [57]. However, there remains a trade-off between flexible architectures that can
capture complex flow patterns and the risk of overfitting in regimes with sparse data. These observations suggest
that practical deployment should consider both the anticipated range of operating conditions and the availability
of representative training data.

6 Uncertainty Quantification and Statistical Evaluation

Beyond point estimates of local flow parameters, quantifying the uncertainty of deep learning predictions is impor-
tant for risk-aware decision making in monitoring and control. Several approaches are employed to characterize
predictive uncertainty. One approach uses ensembles of networks trained with different random initializations and,
in some cases, different subsets of the training data. For a given input s, the ensemble provides a collection of
predictions @(e) indexed by ensemble member e. The empirical mean and variance across the ensemble can be
used to approximate epistemic uncertainty associated with model parameters and limited data [58]. The predictive
mean is computed as

1 E
_ . (e)
Y= E E vy, (35)

and the sample covariance provides a measure of dispersion. Spatial maps of predictive variance highlight regions
where the model is less confident, often correlating with interfacial zones and extrapolation in operating conditions.

Another approach employs approximate Bayesian techniques, such as Monte Carlo dropout, where dropout
layers are kept active during inference. For each stochastic forward pass, a different subset of network connections
is dropped according to specified probabilities, yielding a distribution of outputs for the same input [59]. This
approach approximates Bayesian model averaging under certain assumptions. The predicted variance can be
decomposed into components arising from observation noise and model uncertainty. For a scalar quantity of interest
at location index j, the total predictive variance under a Gaussian likelihood assumption can be approximated as

E
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where o2, represents an estimate of observation noise variance. In regions of the operating space where training

data are dense, the epistemic component tends to be small, and uncertainty is dominated by measurement noise.
In extrapolation regions, epistemic uncertainty increases, reflecting reduced confidence in predictions.

Calibration of uncertainty estimates is crucial. A prediction interval is considered well calibrated if the empirical
frequency with which true values fall inside the interval matches the nominal coverage probability [61]. Calibration is
assessed by constructing prediction intervals at specified nominal coverage levels and computing the fraction of test
samples whose true values lie within them. Reliability diagrams plotting empirical coverage versus nominal coverage
provide a visual diagnostic. Overconfident models produce intervals that are too narrow, leading to empirical
coverages below nominal levels, while underconfident models produce excessively wide intervals. Temperature
scaling and other post-processing techniques can be applied to adjust uncertainty estimates without changing
mean predictions.

Statistical hypothesis testing is used to assess whether observed differences in performance metrics across
architectures are significant. For each test case, metrics such as mean-squared error or structural similarity index
are computed [62]. Paired tests comparing two architectures use the fact that predictions are generated on the same
set of test samples. Let dj denote the difference in metric value for sample k between two models. The sample
mean and variance of dj are used to construct test statistics under assumptions of approximate normality of
differences. When distributional assumptions are doubtful, nonparametric tests based on ranks, such as Wilcoxon-
type statistics, can be employed. These tests indicate whether one architecture consistently outperforms another
across the operating space, beyond fluctuations due to finite sample sizes.
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Error decomposition into bias and variance components provides further insight. For a scalar predicted quantity
y at a given location and operating condition, the expected squared error can be decomposed as [63]

E [(z? = y)ﬂ = Bias® + Var + o} icc, (37)
where Bias measures the systematic deviation of the mean prediction from the true value, Var is the variance of
predictions due to model randomness, and o2 ;. is the irreducible noise variance. Estimation of these quantities
requires multiple independent training runs or approximations via ensembles. In practice, high-capacity models
trained with ample data tend to exhibit low bias but higher variance, while constrained models may show higher
bias but lower variance. Physics-informed regularization can reduce bias in directions constrained by conservation
laws, but may also increase variance if the penalty introduces additional sensitivity to modeling errors in the physics
[64] [65].

Spatially resolved uncertainty maps reveal where predictions are most uncertain. These maps often align with
regions of high physical variability or limited training coverage. In stratified flows, uncertainty may be highest near
the interface, reflecting sensitivity to small changes in level that strongly affect local void fraction. In slug flows,
uncertainty may be concentrated near transient fronts where local flow topology changes quickly. Understanding
these patterns can inform sensor placement strategies; for example, placing additional sensors in high-uncertainty
regions may reduce overall uncertainty more efficiently than uniform sensor distributions [66].

In addition to pointwise metrics, distributional comparisons between predicted and reference fields are per-
formed. Empirical cumulative distribution functions of void fraction and velocity at selected locations are con-
structed, and divergence measures between predicted and reference distributions are computed. Probability integral
transform diagnostics evaluate whether predictive distributions, when transformed by the reference cumulative dis-
tribution function, approximate uniform distributions. Deviations indicate miscalibration or mismatch in distribu-
tional shape. For flow regimes where the statistical behavior of local parameters has operational importance, such as
where maxima or exceedance probabilities matter, such distributional assessments complement mean-square-based
metrics.

Overall, the uncertainty quantification and statistical evaluation highlight both the capabilities and limitations
of deep learning architectures in this application [67]. While point estimates can achieve useful levels of accu-
racy across a range of conditions, uncertainties may be substantial in extrapolation regimes and in regions with
complex interfacial dynamics. Ensemble and approximate Bayesian methods provide avenues for representing this
uncertainty, though they increase computational cost. Calibration and statistical testing ensure that reported
uncertainties and performance differences are interpreted appropriately, supporting cautious use of these models
in practical settings.

7 Conclusion

This work has examined the use of deep learning architectures for local flow parameter estimation in gas-liquid
two-phase flow under variable operating conditions. Starting from the governing equations of two-phase flow, the
study has outlined how local quantities such as gas volume fraction and phase velocities relate to the underlying
conservation laws and how they can be represented on discrete computational meshes. Deep learning models are
used to approximate the nonlinear mapping from sparse or aggregated sensor measurements to high-dimensional
local fields, leveraging architectures that exploit spatial, temporal, and graph-structured correlations in the data.
The models are trained and evaluated on data sets generated from high-fidelity simulations with virtual sensors,
covering a range of superficial velocities, pipe inclinations, and flow regimes.

The results indicate that convolutional encoder—decoder networks can reconstruct many salient features of cross-
sectional phase distributions when provided with sufficiently informative inputs, particularly in regimes similar to
those represented in the training data. Sequence-based and attention-based models offer advantages in capturing
temporal signatures associated with intermittent structures, improving predictions in slug and churn flows when
temporal sensor data are available. Architectures that incorporate physics-based penalties on conservation law
residuals show improvements in preserving global consistency, especially when extrapolating to operating conditions
beyond the training set, although detailed reconstruction of interfacial structures remains challenging in strongly
nonlinear regimes.

The analysis of sensitivity to measurement noise and of generalization across operating conditions underscores
the importance of both data diversity and model design [68]. Networks trained on narrow ranges of velocities or
inclinations may struggle when confronted with substantially different flow conditions, and models without explicit
regularization may overfit noise when data are limited. Physics-informed training, careful normalization, and
augmentation strategies can mitigate some of these effects, but they do not eliminate the fundamental dependence
on representative training data. The spatial and temporal patterns of prediction errors, often concentrated near
interfaces and rapidly evolving structures, point toward potential benefits of specialized treatments of interfacial
regions in network architectures and loss functions.
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Uncertainty quantification and statistical evaluation provide a complementary view of model performance.
Ensemble methods and approximate Bayesian techniques yield spatially resolved estimates of predictive uncertainty,
which tend to be larger in extrapolation regions and in zones with complex interfacial dynamics [69]. Calibration
analyses and hypothesis tests help distinguish genuine differences between architectures from variations due to
finite sample sizes and stochastic training. These tools are useful for assessing the reliability of predictions and for
guiding the cautious deployment of deep learning surrogates in operational environments.

Future developments may focus on closer integration between physics-based and data-driven approaches. Strate-
gies include embedding reduced-order models derived from the governing equations into network architectures, using
simulation data to pre-train models before fine-tuning on experimental measurements, and applying domain adap-
tation techniques to handle shifts in flow conditions and sensor characteristics. Extensions to three-dimensional
geometries, non-Newtonian fluids, and flows with phase change are also of interest. While challenges remain, par-
ticularly in extrapolation and uncertainty characterization, the findings obtained here provide a basis for further
exploration of deep learning as a component of multi-fidelity frameworks for analysis and monitoring of gas—liquid
two-phase flows under variable conditions [70].
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