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Abstract

Serverless computing has emerged as a crucial paradigm for big data analytics, offering auto-
mated resource provisioning and event-driven execution environments that aim to reduce over-
head and maintenance complexities. In this work, a detailed performance and cost analysis of
two prominent serverless platforms, AWS Lambda and Google Cloud Functions, is performed
in the context of big data workloads. By investigating the intricacies of invocation patterns,
parallel execution, cold start latencies, and resource allocation models, this research identifies
essential factors that influence efficiency and scalability. The discussion presents a comprehensive
framework for analyzing task throughput, response times, memory usage, and concurrency lim-
its under varying workloads. The interplay between performance metrics and cost structures is
emphasized, highlighting how function duration, memory configurations, and request frequencies
contribute to diverse pricing outcomes. To further refine these outcomes, mathematical models
capturing task arrival rates, provisioning delays, and cost functions are introduced to elucidate
optimal resource allocation decisions. The results presented in this work underscore the poten-
tial of serverless platforms to handle large-scale datasets effectively, while also illustrating critical
trade-offs in cost, performance consistency, and architectural design. This analysis serves as a
reference for practitioners seeking to implement big data processing pipelines, as well as for re-
searchers aiming to extend the theoretical underpinnings of serverless computing in cloud-based
analytics.

1 Introduction

Serverless computing has significantly altered the cloud computing landscape by decoupling capacity planning and
server management from application development [1]. The notion of deploying functions directly to a provider-
managed environment has transformed the focus of computation, moving it away from complex infrastructure
considerations and toward rapid, event-triggered processing. This shift is particularly relevant for big data analytics,
where ephemeral compute resources can be dynamically scaled to meet fluctuating demands without incurring
substantial idle costs [2]. As organizations handle increasingly large volumes of data from diverse sources, the
operational benefits of serverless computing become more pronounced, especially in the context of cost efficiency and
operational simplicity. However, the performance characteristics of serverless platforms are not entirely uniform;
differences in resource allocation, concurrency limits, cold start times, and underlying virtualization mechanisms
introduce distinct performance profiles [3]. This research elucidates how AWS Lambda and Google Cloud Functions
behave under the stress of large workloads, paying particular attention to concurrency scaling dynamics, function
invocation throughput, and latency characteristics.

The expansion of serverless computing into analytics workflows is underpinned by its capacity to scale near-
instantly in response to rapid surges in demand, a feature that aligns well with the bursty nature of data-intensive
tasks [4]. Despite these advantages, the interplay of factors such as platform overhead, operational latencies, and
cost structures must be analyzed comprehensively. Analytical models can capture essential performance and cost
parameters, facilitating an understanding of how function-centric architectures compare to more conventional and
container-based approaches in big data scenarios. The analysis provided here explores the threshold at which
serverless solutions meet their limitations, whether through concurrency bottlenecks, memory constraints, or in-
creased latency [5]. Such insights lead to mathematical characterizations of system throughput, queueing dynamics,



and cost functions that guide architectural decisions. Consequently, the research emphasizes a multifaceted view
of serverless platforms, outlining both their strengths and limitations and providing a robust basis for designing
large-scale data processing pipelines. [6]

2 Serverless Foundations and Architecture

The architecture of serverless platforms such as AWS Lambda and Google Cloud Functions rests upon a founda-
tional principle of abstracting server management. Developers supply functions, often packaged with necessary
dependencies, and the platform handles all aspects of provisioning and scaling [7]. Central to this model are
ephemeral containers or micro-virtual machines that instantiate rapidly to handle incoming requests. Upon receiv-
ing an event trigger, the platform checks for available, warm function instances to minimize overhead; if none exist,
a new instance is created. While this process can introduce cold start latencies, it also ensures that applications
are not bound to idle resources when demand is low. [8]

From a structural perspective, the serverless execution model can be conceptualized using a multi-layered
approach. At the outer layer, event sources, such as HTTP requests or streaming data services, trigger function
invocations [9]. The core layer contains the functions themselves, which are self-contained pieces of code designed to
handle a specific task. Beneath these layers, container orchestration and resource management subsystems monitor
concurrency limits, memory usage, and the scheduling of new containers [10], [11]. A unifying factor of this layered
approach is the reliance on short-lived containers or micro-VMs, which permit granular scaling at the function
level. This granularity contrasts with traditional virtualization or container orchestration frameworks that scale
entire applications or services.

Mathematically, let λ denote the average arrival rate of incoming events, measured in invocations per second [12].
Let X be the random variable representing the service time of a single function invocation. The serverless platform
can be modeled akin to an M/M/k queue, though the value of k (the number of servers) is dynamically adjusted
by the platform to match demand [13]. In an idealized scenario, one could frame the total system throughput as a
function of λ, E[X], and the concurrency capacity that the provider can scale to. Specifically, one might consider
the probability of instance unavailability Pqueue to be a function of concurrency constraints:

Pqueue =

(
λE[X]

k

)n

Φ(λ, k,E[X]),

where Φ is a function encoding how concurrency scaling aligns with the instantaneous arrival rate. Although
such models can be idealized, they present a starting point for analyzing how ephemeral containers handle bursty
workloads [14]. By capturing the interplay between arrival rates, function execution times, and concurrency scaling,
these models help to characterize the system’s capacity to maintain low latency under massive parallel requests.

The ephemeral nature of serverless resources also imposes constraints on certain classes of applications. Large-
scale data analytics can demand significant CPU or memory resources, and short timeouts may complicate com-
putations that require extended processing times [15]. Yet for workloads that can be partitioned into smaller
tasks, the serverless approach can harness massive parallelism. This parallelism stems from the near-instantaneous
replication of the function container to match the event arrival rate [16]. Understanding how ephemeral containers
spawn, execute, and terminate is key to utilizing serverless computing for large-scale data analytics.

3 Performance Metrics and Scalability

Performance evaluation in serverless computing centers on multiple interrelated metrics [17]. These include invo-
cation latency, cold start overhead, throughput, concurrency limits, and memory utilization. Invocation latency, in
particular, may significantly vary due to cold starts, where a new container or micro-VM is launched and initialized
[18]. In contrast, warm starts reuse existing containers, keeping latency relatively low. The disparity between cold
start and warm start times becomes crucial when analyzing tight response time requirements.

To characterize performance, one can track the distribution of service times for both cold and warm invocations
[19]. Let Tc denote the random variable representing the cold start overhead, and let Tw denote the random variable
for the warm invocation overhead. The total response time for an invocation can then be modeled as: [20]

R =

{
Tc + P, with probability pc,

Tw + P, with probability 1− pc,

where P is the execution time for the actual function payload, and pc is the probability of a cold start. This
probability depends on the arrival pattern of requests and the idle timeout of function instances [21]. By collecting
samples of Tc, Tw, and P , one can build empirical or theoretical distributions to quantify the expected value
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and variance of R. Such characterizations are valuable in comparing serverless platforms, as they can reveal how
infrastructure choices and runtime optimizations influence latency profiles.

Beyond latency, concurrency scaling represents a vital dimension of performance [22]. Ideally, as the arrival
rate increases, the platform replicates function instances proportionally. Nevertheless, practical limits exist in both
AWS Lambda and Google Cloud Functions [23]. If Λmax denotes the maximum concurrency for a given account
or region, the probability of saturating concurrency resources rises as λ grows. Once concurrency is saturated,
new invocations must wait, resulting in queueing delays or failures. In mathematical terms, if we define k(λ) to
be the dynamically allocated concurrency at arrival rate λ, then the maximum concurrency constraint imposes
k(λ) ≤ Λmax. When λ is sufficiently large, further arrival increases produce queuing behavior and degrade system
responsiveness [24]. Understanding these saturation points helps clarify the maximum feasible throughput and
informs decisions about partitioning data processing tasks or upgrading concurrency limits.

Additionally, memory settings impose another layer of complexity. In certain configurations, memory allocation
is directly correlated with CPU resources [25]. For instance, a function configured with higher memory may access
a more powerful CPU. This interplay can significantly affect execution times for compute-bound tasks [26]. One
can model the memory allocation dimension by letting M be the assigned memory in megabytes, which influences
the function’s execution speed. A simplified approach introduces a function f(M) that captures how the mean
processing time E[P ] decreases with increasing memory and CPU resources. Then, the overall response time can
be represented by an expression of the form: [27]

R(M) =

{
Tc(M) + c1

f(M) , with probability pc,

Tw(M) + c1
f(M) , with probability 1− pc,

where c1 is a constant reflecting the computational complexity of the function payload. This formulation
underscores how memory and CPU allocation can influence not only throughput but also cold start times, as larger
memory footprints may increase container initialization overhead [28]. Quantifying these effects through empirical
measurements and theoretical models provides a systematic approach to assessing serverless performance across
different workloads.

4 Cost Modeling and Resource Allocation

Cost analysis in a serverless environment is strongly coupled with the performance characteristics of the application
[29]. Because providers usually charge per execution time and memory configuration, the choice of memory size
and concurrency level can significantly impact billing. Let C(mem) denote the per-millisecond charge for a function
assigned a memory size of mem megabytes. When a function invocation runs for t milliseconds, the cost of a single
invocation can be expressed as: [30]

Costinvocation(mem, t) = C(mem)× t.

Further, each invocation carries an overhead in requests, typically with a cost per million invocations. If α is
the cost per request, and β(mem) is the cost per millisecond for a given memory tier, then for N total invocations
each taking t milliseconds, the total cost can be approximated as:

Costtotal = α×N + β(mem)×N × t.

Choosing the optimal memory allocation to minimize total cost while maintaining acceptable performance
becomes a multi-objective optimization challenge. One might seek to minimize cost subject to latency constraints
or, conversely, minimize latency under a given budget [31]. A multi-objective optimization approach can be adopted,
where a function L(M) describes latency as a function of memory, and a function Γ(M) describes the total cost.
One then looks for M∗ such that: [32]

minΓ(M) subject to L(M) ≤ Lthreshold,

where Lthreshold is a specified performance requirement. Alternatively, one might define a Lagrangian of the
form:

L(M,λ) = Γ(M) + λ(L(M)− Lthreshold),

with λ being a Lagrange multiplier [33]. Solving for ∂L
∂M = 0 could identify points where the trade-off between

cost and latency is balanced. However, such analytical expressions can become complex due to the variability of
cold starts, concurrency constraints, and ephemeral container initialization times.

Dynamic scenarios introduce further intricacies [34]. In real-time big data analytics, workloads may fluctuate,
causing the arrival rate λ to shift rapidly. An adaptive strategy might continuously monitor performance metrics

3



and adjust memory allocations on the fly, aiming to balance cost and throughput in near-real-time. This leads to
control-theoretic models, where the control variable M is updated based on feedback about latency, concurrency
usage, and ongoing costs [35]. One might formulate a discrete-time controller:

Mk+1 = Mk + ζ
(
Lmeasured(k)− Ltarget

)
,

where ζ is a gain factor [36]. The cost function would then be evaluated iteratively to ensure that as memory
is increased or decreased, the overall system behavior remains within desired performance boundaries without
causing prohibitive billing. The viability of such adaptive policies is contingent on the speed with which serverless
platforms apply memory configuration changes and the accuracy of short-term predictions of incoming workload
intensity. [37], [38]

In practice, evaluating cost efficiency also demands attention to provider-specific pricing structures. AWS
Lambda, for example, uses a specific incremental scale for memory settings, whereas Google Cloud Functions
applies a comparable but not identical pricing model. Calculating and comparing total expenditure under real-
world conditions often reveals subtle distinctions between platforms [39]. Any cost model must thus be nuanced
enough to account for the interplay of invocation frequencies, average execution durations, memory tiers, and
concurrency limits.

5 Implementation and Experimental Analysis

Implementing serverless analytics pipelines involves deploying functions in a provider’s platform, configuring triggers
for data intake, and integrating various services for orchestration [40]. The experimental methodology typically
encompasses the development of test workloads that range from lightweight, CPU-bound functions to memory-
intensive tasks such as parsing large files or performing transformations on streaming data [41]. Once the functions
are deployed, an external driver can generate invocation requests at controlled rates to evaluate throughput,
concurrency scaling, and response times. [42]

A critical phase in experimentation is assessing cold start frequency under different traffic patterns. For instance,
sporadic invocation patterns may yield a higher proportion of cold starts. Conversely, sustained invocations at a
moderate rate often keep containers warm, minimizing cold start overhead [43]. Gathering detailed logs allows for
measuring distributional properties of latency, including tail latencies that might become significant during load
spikes. The time-series data of invocation latencies offers insight into how the serverless system adapts to sudden
bursts. [44]

Performance analysis also involves correlating concurrency usage with overall throughput. Observing metrics
such as the number of active function instances at a given moment uncovers the elasticity and responsiveness of
the platform [45]. When concurrency scaling lags behind large surges in invocation rate, temporary queuing may
occur. By contrasting these metrics with predicted values from the theoretical M/M/k or M/M/∞ frameworks,
one can evaluate the accuracy of queueing-based performance models in practical environments. In many cases,
real systems deviate from idealized assumptions due to container re-initializations, memory variations, and network
factors. [46]

Memory allocation experiments can illustrate the trade-offs described in previous sections. By deploying func-
tion variants with different memory sizes, one can measure changes in execution time, cold start latency, and cost
per invocation [47]. Empirical results often show diminishing returns: beyond a certain point, increasing memory
leads to marginal improvements in execution time but significantly increases cost. Conversely, minimal memory
settings may cause the function to run slowly, elevating the total billed duration [48]. Such findings highlight the
value of systematic experimentation in identifying near-optimal configurations.

Another dimension of experimentation revolves around data partitioning strategies [49]. Big data workloads
often require subdividing datasets into manageable chunks for parallel processing across multiple function invoca-
tions. The granularity of these chunks affects concurrency and can influence latency. If too few chunks are used,
concurrency is underutilized; if too many chunks are employed, overhead from orchestrating a large number of
function invocations can become prohibitive [50]. Understanding how best to partition large datasets for serverless
execution remains a key challenge. This issue can be approached mathematically by modeling partition sizes and
arrival rates, then determining the partition size that optimally balances overhead and concurrency gains [51], [52].
For instance, let N represent the total number of records, and let ω be the partition size, so that the number
of function invocations is N

ω . One can then define a function Ψ(ω) representing the total elapsed time or cost.
Minimizing Ψ(ω) with respect to ω yields insights into how to slice the data for parallel function execution. [53]

In deploying these analyses, real-world conditions introduce additional complexity. Network latencies, API call
overheads, and ephemeral storage limits can all affect performance. Observing the interplay of these variables
strengthens the validity of theoretical models, uncovering scenarios where adjustments are needed to account for
platform-specific behaviors [54]. Experimental analysis thus remains a cornerstone of understanding how serverless
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architectures behave in production-like contexts, where controlled theoretical assumptions give way to the subtleties
of real systems.

6 Advanced Mathematical Modeling for Big Data

As big data workloads demand both large-scale parallelism and efficient resource utilization, advanced mathematical
models can capture the evolving dynamics of serverless platforms [55]. One line of inquiry considers the interplay
between arrival processes and concurrency expansions. An assumption of a Poisson arrival process can work as a
first approximation, letting λ(t) represent a time-varying arrival rate [56], [57]. We define the number of active
function instances at time t as k(t). Then a dynamic equation can be posited:

dk(t)

dt
= γ

(
λ(t)− µk(t)

)
,

where γ encapsulates the elasticity of the platform and µ is an effective service rate per instance [58]. In a
highly idealized scenario, the serverless system adjusts k(t) almost instantaneously to track λ(t)/µ. In reality,
platform-imposed limits and cold start times create delays in instance provisioning, producing a lag in concurrency
scaling. [59]

Another sophisticated perspective involves coupling the concurrency adaptation with queueing models that
incorporate state-dependent service times. Let Q(t) be the queue length at time t [60]. When new events arrive
and no warm instances are available, either new containers must be launched or the event must wait. If the system
has an upper concurrency limit Λmax, the queue length evolves as:

dQ(t)

dt
= λ(t)−min(Λmax, k(t))µ,

subject to a rule for how k(t) changes. In discrete-event simulations, these equations become transitions between
states [61], capturing the number of active containers, number of queued requests, and time since a container was
last used [62]. Such models allow for quantitative analysis of how bursts of incoming data induce backlogs, how
quickly concurrency can expand, and how cold starts reduce effective throughput.

For big data analytics, tasks can be large and may themselves be subdivided [63]. Suppose each invocation
processes a batch of b records from a dataset of total size N . The time to complete one batch might depend not
only on the function’s core runtime but also on the overhead required to fetch data, decrypt or decompress it, and
write back results [64]. A more complex model might define the service time Xb as:

Xb = Ω(b;M, δ) ,

where M is the allocated memory and δ incorporates external overhead factors [65]. The function Ω can be
empirically derived from measurements. Then the total time to process the dataset becomes: [66]

Ttotal = max
t

{N/b∑
i=1

Ii(t)Xb(i)
}
,

where Ii(t) indicates that the ith batch is processed at time t. In parallel processing, multiple batches run
simultaneously, and the concurrency limit impacts how many can execute concurrently [67]. A thorough mathe-
matical exploration must account for the distribution of Xb across multiple invocations, potential data skew, and
the cost model that accumulates billing per millisecond of function execution.

Stochastic fluid models can also be introduced [68]. In a fluid model, the workload is treated as a continuous
flow instead of discrete tasks, and concurrency expansion is viewed as a rate at which the system can process
the fluid. Such models can be beneficial for approximating behavior under large-scale parallelism, where discrete
queueing analyses become unwieldy. By defining a rate of data ingestion ρ(t) and a processing capacity κ(t), one
can write: [69]

dW (t)

dt
= ρ(t)− κ(t),

where W (t) is the amount of outstanding workload. When κ(t) can spike up to a maximum concurrency
multiplied by a per-instance rate, the fluid model reveals system bottlenecks [70]. For instance, if concurrency
cannot scale quickly enough, W (t) grows during surges, leading to potential timeouts if certain tasks must complete
within strict deadlines.

An additional avenue for rigorous modeling lies in optimal concurrency management [71]. Even though serverless
platforms often abstract these details, advanced users can configure concurrency settings or partition tasks in a
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manner that effectively shapes concurrency behavior. One approach might define a cost function for concurrency
overshoot. If concurrency is ramped up too aggressively, overhead from launching and maintaining ephemeral
containers might outweigh the performance gains [72]. Thus, an objective function can be formulated to trade off
completion time against overhead costs:

J =

∫ T

0

(
w1 ·max(0,W (t)) + w2 · c

(
k(t)

))
dt, [73]

where w1 is a weight penalizing outstanding workload, w2 is a weight penalizing concurrency-related costs,
and c(·) is a cost function reflecting the overhead of maintaining k(t) instances. Minimizing J yields a control
strategy for concurrency expansion [74]. Although actual serverless environments may not expose concurrency as
a fine-grained control variable, such modeling suggests strategies for partitioning tasks and scheduling invocations
that approach optimal trade-offs in real deployments.

Applying these advanced models in practice demands careful calibration and validation against empirical data.
Each of these mathematical formalisms, from queueing-based approaches to fluid approximations and cost optimiza-
tion, highlights different facets of serverless computing [75]. By integrating them with robust experimental data,
researchers and practitioners can more precisely anticipate how AWS Lambda or Google Cloud Functions behave
under complex, large-scale analytic workloads, and how to tailor configurations to achieve optimal performance
and cost profiles.

7 Conclusion

The exploration of serverless computing for big data analytics has revealed a multifaceted landscape where per-
formance, scalability, and cost-efficiency intertwine [76]. The comparative analysis of AWS Lambda and Google
Cloud Functions highlights the significance of cold start latencies, concurrency thresholds, and memory configura-
tions in determining throughput and responsiveness. Even as these platforms abstract many complexities through
automated resource provisioning, the underlying architecture exerts substantial influence on workload performance,
particularly when task intensities fluctuate or when large datasets demand extensive parallel processing [77]. Math-
ematical modeling contributes to a deeper understanding of these dynamics by offering frameworks for analyzing
how function invocations, queueing delays, and capacity scaling combine to shape real-time responsiveness.

The interplay between performance and cost underscores the value of optimizing memory allocations and par-
titioning strategies for specific workload profiles. Detailed experimental evaluations show how marginal gains
in execution speed may be offset by elevated billing, while overly conservative resource settings risk prolonging
runtimes or creating concurrency bottlenecks [78]. Advanced models, including queueing systems, fluid approxima-
tions, and control-theoretic perspectives, provide a lens through which to predict bottlenecks, quantify overhead,
and propose fine-grained adjustments to concurrency. By grounding these models in empirical data [79], one obtains
a robust toolkit for designing serverless architectures that are both cost-effective and high-performing. [80]

Challenges remain in translating the insights of theoretical models to production-scale applications, given the
complexities of real-time event handling, ephemeral container initialization, and evolving workloads. Nonetheless,
the paradigm of serverless computing continues to evolve as providers refine their platforms and developers refine
strategies to mitigate cold starts and resource constraints [81]. The findings presented here aim to guide future
experimentation and modeling work, illuminating the opportunities and constraints inherent in serverless environ-
ments. As big data continues to grow in volume and velocity, serverless platforms will likely play an increasingly
important role in data analytics pipelines. Comprehending their behaviors, limitations, and optimization avenues
is a critical step toward fully harnessing their potential for agile, cost-efficient computation. [82], [83]
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