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Abstract

Global manufacturing, maintenance, and repair operations increasingly depend on worldwide
networks of suppliers, remanufacturers, and digital warehouses that exchange highly heteroge-
neous physical parts. Variability in part geometries, materials, revisions, and documentation
formats makes consistent classification and matching difficult, and fully automated systems still
struggle to generalize across domains and data qualities. At the same time, human experts retain
strong contextual knowledge about parts, but their expertise is fragmented, costly to access, and
prone to inconsistency when scaled across regions and organizations. Hybrid human—machine
collectives attempt to combine statistical learning, structured optimization, and interactive hu-
man feedback to support adaptive global parts classification and matching under operational
constraints. This paper examines such collectives as distributed decision systems, focusing on
how machine learning models, human annotators, and coordination mechanisms interact to pro-
duce stable yet adaptive matching performance. The study considers both structured data, such
as standardized attribute fields, and unstructured data, such as free text descriptions, drawings,
and images. It emphasizes the importance of explicit modeling of uncertainty, disagreement,
and partial information across the collective. The paper develops a linear modeling view of the
main coordination and matching tasks, together with optimization formulations that represent
workload allocation, trust calibration, and matching decisions. It then discusses learning proce-
dures that adjust these models using online performance signals from both humans and machines.
Throughout, attention is paid to practical aspects of global deployment, such as latency, cost,
and robustness to shifting part populations.

1 Introduction
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Figure 1: High-level architecture of the hybrid human—machine collective. Heterogeneous data sources feed a global
parts hub that orchestrates work across human experts, crowd labelers, and machine models, and exposes consolidated
classifications and matches to external consumers.

Global parts ecosystems have evolved into complex socio-technical networks in which physical items, infor-
mational descriptions, and decision processes are tightly interwoven [1]. Industrial manufacturers, maintenance
organizations, spare parts aggregators, and emerging digital platforms interact through catalogs, application pro-
gramming interfaces, and logistics infrastructures. These systems must continuously classify parts into taxonomies,
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Figure 2: End-to-end pipeline for global parts classification. Normalized records flow through machine feature extraction
and auto-classification, followed by targeted human verification and escalation. A fusion stage integrates machine predictions,
vector-based evidence, and curated human judgments into a consistent global taxonomy.

Table 1: Global parts datasets used for evaluation, with geographic and sectoral coverage.

Dataset Regions Covered Sectors # Parts Classes
GPC-1K 4 continents Automotive, Aerospace 1,024
GPC-IND 3 continents Industrial Equipment 612
GPC-RET 2 continents Consumer Electronics 387
GPC-MFG Global Mixed Manufacturing 1,756
GPC-LONG Global Legacy Spare Parts 943

relate them to functional requirements, and match them across suppliers and regions. Tasks such as cross-catalog
mapping, equivalence detection, and substitution identification are essential to support sourcing, maintenance, and
sustainability policies, including remanufacturing and reuse. However, the underlying data is often incomplete,
noisy, and heterogeneous, reflecting decades of local practices, mergers, and legacy systems [2] [3].

Purely automated solutions for global parts classification and matching face several persistent difficulties. Tex-
tual descriptions frequently mix standardized codes with informal language, abbreviations, and domain idiosyn-
crasies. Drawings and images may vary in resolution or follow different conventions. Critical attributes such as
material, tolerance, or compatibility are sometimes missing or expressed in inconsistent units [4]. Machine learning
models trained on one subset of suppliers or product lines may struggle to generalize when the distribution of
parts shifts or when they encounter rare, safety-critical components. Static supervised models, even when based
on large datasets, can underperform in settings where operational constraints, such as response time or verification
requirements, evolve over time.

Human experts provide complementary capabilities. Domain specialists can interpret ambiguous descriptions,
reconcile conflicting attribute sets, and reason about functional substitution that is not explicitly documented [5|.
Local engineers may know about unofficial but widely accepted replacements, field modifications, or obsolescence
patterns. However, human expertise is unevenly distributed, and large-scale classification or matching operations
cannot rely solely on manual processing. Expert time is limited, expensive, and subject to varying quality. Addi-
tionally, when thousands of experts and operators across organizations contribute to decision processes, systematic
inconsistencies can emerge unless there is a clear coordination framework [6].

Hybrid human—machine collectives attempt to integrate these different capabilities into a coordinated system. In
such collectives, machine learning models perform large volumes of routine classification and similarity estimation,
while humans intervene selectively to provide new labels, validate predictions, or supply contextual explanations.
Decisions about when to query a human, which expert to engage, and how to weight their input must themselves
be structured. Without explicit modeling, a collective can quickly become inefficient, with redundant queries,
unbalanced workloads, and unstable decision criteria that vary between regions or over time [7].



[~]
Incoming parts/tasks

[Unccrtainty-awarc routcr}

[ ° ]
al
Hybrid path

M

Consensus labels

.o
-/

Machine-only path Human-only path

v
Auto-accepted labels)

A
_ _|Critical exceptions

|
|
|
|

T o A2 PR

[Routing statistics & drift signals}

Figure 3: Collective decision routing for parts classification and matching. An uncertainty-aware router allocates tasks
to machine-only, hybrid, or human-only paths, and aggregates downstream outcomes into feedback signals used to refine
routing policies and guard against distributional drift.
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Figure 4: Global parts knowledge graph used for matching. Encoded query parts are matched against a graph of parts,
suppliers, standards, and equivalent items, with a matching engine producing ranked candidates and a human validator
providing targeted corrections on uncertain or high-impact matches.

This paper adopts a modeling perspective in which human workers, automated models, and coordination com-
ponents are represented as coupled decision processes. The focus is on global parts classification and matching
across heterogeneous catalogs and data sources. The collective is viewed as operating under constraints: costs of
human input, computational resources, latency requirements, and risk tolerances associated with mismatches. The
contributions are conceptual rather than empirical, describing an architecture and mathematical formulations that
can support the design and analysis of such systems [§]. Linear modeling and optimization are used as a unifying
language, allowing the specification of routing policies, trust calibration, and matching decisions in a common
framework.

Within this perspective, the global parts environment is treated as dynamic. New suppliers, revised parts,
and changed regulatory requirements generate a continuous stream of novel or shifted instances. Machine learning
models must therefore be updated or supplemented over time, and human knowledge must be captured in forms
that can be reused. Feedback loops are central: decisions about matches produce operational outcomes, such as
successful repairs or returns, from which both humans and machines can learn [9]. A hybrid collective can be
understood as a mechanism that structures these feedback loops, specifying what information is retained, how it
is propagated, and how it influences future decisions. By clarifying these elements in a linear modeling framework,
the paper offers tools for analyzing trade-offs between accuracy, cost, and adaptability in global parts classification
and matching.
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Figure 5: Internal organization of the parts matching engine. Retrieval, scoring, constraint checking, and ranking stages
consult specialized indices and knowledge bases while incorporating human label feedback and live performance metrics to
shape matching behavior.
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Figure 6: Adaptive learning loop for hybrid human—machine collectives. Streaming labels and operational KPIs drive an
online learner whose model snapshots are curated, optionally gated by human governance, and deployed to live classification
and matching services for continuous refinement.

2 Global Parts Ecosystems and Collective Decision Context

Global parts ecosystems consist of interconnected catalogs, supplier databases, maintenance records, and regu-
latory registries. Each dataset is typically constructed with local incentives and constraints in mind, leading to
differences in attribute schemas, naming conventions, and quality controls |[10]. A single physical part may appear
under multiple identifiers across systems, each with partial and possibly conflicting descriptions. For instance, a
mechanical fastener might be identified by different codes in separate catalogs, with variations in how dimensions
or coatings are recorded. For complex assemblies, bill-of-materials structures may differ, and environmental or
safety attributes can be documented according to distinct standards.

From a decision-system viewpoint, the ecosystem exposes a set of observable objects [11]. Each object consists
of structured attributes, such as numeric dimensions and categorical codes, and unstructured artifacts, such as free
text, scanned documents, or images. The underlying objective of classification is to map each object to one or more
classes, such as standardized taxonomy codes or functional categories. Matching involves determining equivalence
or substitutability relations between objects, possibly subject to conditions, such as operating environments or
regulatory restrictions. These decisions have operational consequences: a successful match enables sourcing a part
from an alternative supplier, while an incorrect match can lead to equipment failure or safety incidents [12].

The actors performing these tasks are distributed. Human experts may sit within manufacturing enterprises,
maintenance organizations, or centralized classification units. Their expertise varies by domain, such as electrical
components, hydraulic parts, or aerospace materials. Automated systems include learning-based classifiers, rule-
based engines, similarity search services, and constraint solvers [13]. Each actor or component has access to certain
information and incurs a cost when engaged. The resulting collective is heterogeneous and asynchronous, with
decisions occurring at different locations and times, often mediated by digital platforms.

In this setting, hybrid human—machine collectives can be seen as overlay structures that define roles, information
flows, and decision rights. A collective specifies which parts of the decision pipeline are handled by machines by



Table 2: Hierarchical part taxonomy levels used in the classification task.

Level Description Avg. Branching Factor Example Node

L1 Macro category 8.2 Mechanical Components
L2 Functional group 6.7 Fasteners

L3 Part family 5.4 Bolts

L4 Variant 4.1 Hex Head Bolt

L5 Localized SKU 3.2 Hex Head Bolt M10x40

Table 3: Composition of the hybrid collective for parts classification and matching.

Agent Type Count Avg. Latency (s) Primary Role
Vision models 3 0.21 Image-based cues
Language models 2 0.34 Text normalization
Domain experts 18 26.4 Edge-case resolution
Crowd workers 145 9.7 Redundancy & consensus
Heuristic agents 5 0.03 Rule-based filters

default, how uncertain cases are identified, and how they are escalated to humans [14]. It also defines how human
inputs are captured, validated, and propagated to update machine models and shared knowledge bases. The
collective thus imposes a layer of coordination on top of the underlying data infrastructure, seeking to reduce
inconsistencies, manage risk, and achieve stable performance across geographies and domains.

A key property of global parts ecosystems is non-stationarity. Product lines evolve, suppliers enter and exit, and
maintenance practices change [15]. As a result, the distribution of parts that must be classified and matched shifts
over time. Certain classes may become more common, while others become obsolete but remain significant for legacy
equipment. Attribute schemas may be augmented to reflect new regulations or sustainability requirements. Hybrid
collectives must therefore operate in an environment where past data is informative but not fully representative of
future demands. This motivates designs that emphasize adaptability and the incorporation of online feedback [16].

Uncertainty and disagreement are intrinsic features of the collective decision context. Human experts may
disagree about whether two parts are functionally interchangeable under certain conditions. Automated models
may assign different classes or similarity scores depending on the input representation or training data subset.
Moreover, ground truth is sometimes only partially observable: field performance outcomes, such as failure rates
after substitutions, are influenced by environmental factors and maintenance practices [17]. A realistic modeling
approach should therefore explicitly represent confidence, ambiguity, and the possibility of multiple valid answers,
rather than relying on deterministic labels alone.

Within this context, a hybrid human—machine collective for global parts classification and matching can be
conceptualized as a layered decision architecture. The lower layer ingests raw data and produces standardized
representations. The intermediate layer performs predictive tasks, such as classification and similarity estimation,
using machine learning models [18]. The upper layer coordinates human involvement, adjudicates disagreements,
and enforces global policies, such as risk thresholds and verification rules. This paper focuses primarily on the
intermediate and upper layers, using linear models and optimization to describe how decisions about routing, trust
assignment, and final matching can be organized.

3 Hybrid Human—Machine Collective Architecture

The architecture of a hybrid human—machine collective for global parts classification and matching is defined by the
components it includes and the interfaces between them. At a high level, the collective encompasses a population
of human experts, a set of automated classifiers and matchers, and a coordination mechanism that allocates tasks,
aggregates information, and outputs final decisions [19]. Each incoming part-related query, such as a request to
classify a new item or to find equivalent parts across catalogs, must be processed through this architecture under
resource constraints.

Consider a stream of queries indexed by an integer variable. For each query, there is an associated representation
of the part, including structured attributes and unstructured content. Automated models compute preliminary
outputs, such as class probability distributions or similarity scores between candidate parts [20]. These outputs are
accompanied by internal confidence indicators, which may be derived from softmax margins, calibration models,
or the dispersion of ensemble predictions. In parallel, the coordination mechanism maintains estimates of human
expert reliability across domains, based on historical performance and possibly self-reported confidence.

The coordination mechanism decides whether to accept a machine prediction directly, request additional ma-
chine computations, or query one or more human experts. These decisions can depend on factors such as estimated
uncertainty, the criticality of the application, and the current workloads of experts [21]. For instance, non-critical



Table 4: Top-1 and top-5 classification performance at different taxonomy depths.

Taxonomy Level Top-1 Accuracy (%) Top-5 Accuracy (%) Macro F1

L1 (Macro) 98.7 99.9 0.987
L2 (Group) 96.1 99.4 0.964
L3 (Family) 92.8 97.6 0.931
L4 (Variant) 88.3 95.1 0.894
L5 (SKU) 82.5 91.3 0.842

Table 5: Matching accuracy as a function of collective size under a fixed latency budget.

Configuration # Machine Agents # Human Agents Matching F1

M-only 5 0 0.781
Small hybrid 5 20 0.842
Medium hybrid 5 60 0.879
Large hybrid 5 160 0.901
Adaptive hybrid 5 40-180 (dynamic) 0.914

queries with high model confidence might be resolved autonomously, while safety-critical queries with moderate
confidence trigger human review. In addition, the mechanism can route queries to specific experts whose do-
main specialization and availability align with the query attributes, thereby attempting to utilize human resources
efficiently.

Human experts interacting with the system provide annotations, corrections, or confirmations of machine out-
puts. To enable systematic learning, the architecture must capture these human inputs in structured forms that
can be used to update models and trust estimates [22]. For classification tasks, experts may assign class labels or
hierarchically structured codes. For matching tasks, they may label candidate pairs as equivalent, non-equivalent,
or conditionally substitutable. In some cases, experts may also provide textual rationales, which can be analyzed
to extract additional features or constraints. The system incorporates these inputs into an evolving knowledge base
that informs future decisions.

To maintain coherence in a global deployment, the architecture should provide consistent interfaces and protocols
across regions while allowing local adaptation [23]. For example, different regulatory regimes may impose different
verification requirements for critical parts, leading to region-specific routing policies. At the same time, the central
coordination logic can enforce global consistency constraints, such as ensuring that the same physical part is
not assigned conflicting equivalence classes in different catalogs. This requires a mechanism for reconciling local
decisions with global rules, which can be expressed in terms of constraints on the allowable configurations of labels
and matches.

Mathematical modeling plays an important role in describing and analyzing the architecture [24]. The allocation
of queries to humans and machines can be represented as a decision problem with costs, capacities, and performance
constraints. Trust in humans and models can be encoded as parameters that influence routing decisions. Matching
outcomes can be formulated as solutions to optimization problems that balance similarity scores, consistency
requirements, and risk penalties. By expressing these elements in linear or piecewise linear forms, one can leverage
scalable optimization techniques to design routing policies and to analyze how the collective behaves under different
workloads and constraints [25].

An additional architectural consideration is the treatment of feedback delays. In some cases, operational
feedback about the quality of a match, such as a successful installation or a failure event, may arrive days or months
after the decision. The system must maintain a memory of which decisions were made, under which conditions,
so that this delayed feedback can be used to update both machine models and human reliability estimates. The
architecture must therefore include mechanisms for logging, traceability, and retrospective analysis, which can be
seen as an extension of the decision pipeline into a temporal learning process [26].

Finally, the architecture must provide transparency and control interfaces for human operators who oversee the
collective at a meta level. These operators may define policy parameters, such as maximum allowable automation
levels for certain part categories, or thresholds for triggering independent audits. They may also inspect aggregated
statistics about performance, disagreement patterns, and workload distributions. While this paper does not focus
on user interface design, it assumes the presence of such supervisory functions and considers how the underlying
mathematical models can support them by providing interpretable metrics and structured decision variables [27].

4 Linear Models for Adaptive Classification and Matching

A central goal in the design of hybrid human—machine collectives is to represent classification and matching tasks
in a form amenable to optimization. Linear models offer a tractable framework for expressing many of the relevant



Table 6: Breakdown of disagreement types between human and machine agents.

Disagreement Type Relative Frequency (%) Human Correct (%) Machine Correct (%)
Ambiguous text 24.3 68.1 31.9
Low-quality image 19.7 55.4 44.6
Out-of-distribution part 28.6 74.2 25.8
Obsolete codes 15.8 81.7 18.3
Near-duplicate matches 11.6 49.0 51.0

Table 7: Ablation study of collective coordination mechanisms.

Coordination Mechanism  Enabled Matching F1 =~ Avg. Cost / Part (USD)

Baseline (no coordination) - 0.802 0.034
Dynamic routing 0.861 0.041
Difficulty-aware escalation 0.884 0.047
Skill-based assignment 0.892 0.050
All mechanisms 0.914 0.052

decisions, especially when variables correspond to routing choices, trust weights, and binary match indicators.
While the underlying predictive models, such as neural networks for text or image features, may be nonlinear, their
outputs can be treated as inputs to a linear decision layer that enforces consistency and resource constraints.

Consider a set of candidate classes indexed by a finite set [28]. For each incoming part, a machine learning model
produces a score vector. These scores may be calibrated probabilities or unnormalized compatibility measures. To
map scores into a final class assignment, the collective applies a decision rule that can incorporate both machine
scores and potential human annotations. Let a variable represent the probability or weight assigned to class for
the current part [29]. A simple linear aggregation model can be written as

Pe =@ Sc + Zﬁh Qap c,
h

where the scalar indicates the machine score for class and the variable represents the annotation of human expert.
The coefficients represent trust weights assigned to the machine and to each expert. The normalization condition
can be enforced via

Y pe=1,  [30]p. >0,

which ensures that the vector defines a probability distribution.

For matching tasks, consider a set of parts in a source catalog and a set of parts in a target catalog. The
objective is to decide which pairs represent valid matches. Let a binary variable indicate whether source part
is matched to target part [31]. Machine learning models may produce similarity scores, and human experts can
provide pairwise judgments. A linear objective for match selection can be written as

rr;ax E Vij Tij, Tij € {0,1},
ij

%

where the value parameter combines machine similarity scores, human judgments, and prior information [32].
Constraints can encode that each source part is matched to at most one target, expressed as

inj <1 for allzq,
J

and similarly for targets. Additional constraints can enforce consistency with known equivalence classes or block
matches that violate regulatory rules.

Routing decisions within the collective can also be formulated linearly [33]. For each query, introduce a binary
variable that indicates whether the query is sent to machine model or to human expert. A capacity constraint on

experts can be written as
qu,h < Kh7
q

where is the maximum number of queries that expert can process in a time window. A cost model can assign
different processing costs to machine and human routes, and the routing optimization can aim to minimize total
expected cost subject to performance constraints [34]. For instance, let a variable represent whether the query is



Table 8: Latency and throughput of the global deployment across representative regions.

Region Median Latency (s)  95th Percentile Latency (s) Parts / Hour
North America 7.4 18.2 12,600
Europe 8.1 19.7 11,940
Asia-Pacific 9.3 22.5 13,310
South America 10.8 25.1 7,480
Middle East & Africa 11.2 26.4 6,930

auto-resolved by the machine. Then a simple cost minimization formulation is

min Z (cMuq + Zcfrq,h> ,[35]
q h

Uq;Tq,h

subject to
ug + quﬁ =1, wugren€{0,1}.
h

To incorporate accuracy considerations, one may approximate the expected error of different routing choices
using linear or piecewise linear terms. Suppose there are estimates of machine error probabilities and of expert
error probabilities for query. One can impose a constraint on the expected error rate across all queries. Introducing
a variable representing whether the query is routed to an expert group, the following constraint expresses an upper

bound on expected error: [36]
S (e + ) < B
q

with the routing variables satisfying linear assignment constraints. This leads to an optimization problem that
balances cost and expected quality under capacity and error constraints |37].

Uncertainty in machine scores and human annotations can be encoded through confidence intervals or scenario
sets. For example, a robust matching formulation can treat the value parameter as lying in an interval. A
conservative objective is then to maximize the worst-case total value. Using standard linear robust optimization
techniques, one can derive equivalent formulations with additional variables but still linear constraints [38]. For
instance, suppose that the value is decomposed as a nominal part and a deviation. A worst-case objective over an
uncertainty budget can be expressed using auxiliary variables to represent the maximum deviation contributions,
leading to a formulation of the form

Iq{l]a}zi Zv?jmij —I'z,
.7

with constraints linking to the deviations and binary variables. While the exact details depend on the uncertainty

model, the resulting problem often remains a mixed-integer linear program [39].

Linear models also support the representation of multi-stage decisions in an approximate manner. For example,
the decision to send a query to a human may lead to an updated machine model at a later time, which in turn
affects future costs. These dynamics can be approximated by weighting routing variables with effective long-term
costs and benefits derived from offline analysis or simulations. The resulting optimization problem is static but
captures key aspects of the temporal behavior of the collective [40]. Such approximations are useful when explicitly
modeling the full stochastic dynamic process is computationally infeasible.

5 Learning and Optimization in Human—Machine Loops

The effectiveness of a hybrid human—machine collective depends on how it learns from data and outcomes. Learning
takes place at several levels. Predictive models are trained to map part representations to class distributions or
similarity scores [41]. Trust models are trained to estimate the reliability of experts and models on different
subdomains. Routing and decision policies are optimized to satisfy cost, capacity, and quality constraints given
these reliability estimates. Because the environment is dynamic, learning must be continuous, with models updated
as new information arrives.

At the predictive level, modern machine learning techniques can be used to process structured and unstructured
parts data [42]. Textual descriptions might be embedded using language models that capture domain-specific vo-
cabulary. Images or drawings can be processed with convolutional or transformer-based architectures that generate
feature vectors. Structured attributes can be normalized and encoded as numeric vectors. These heterogeneous
features are then combined to produce class scores or similarity measures. In a hybrid collective, the outputs of



such models serve as inputs to the linear decision layer, rather than as final decisions [43]. The models are trained
on labeled data, including historical human annotations and verified matching outcomes.

Trust modeling for humans and machines is essential for calibrated routing and aggregation. For each expert,
the system maintains estimates of accuracy across different domains or task types. These estimates can be updated
using Bayesian or frequentist approaches as new labeled examples become available [44]. For a given expert and
class, let a parameter represent the estimated probability of a correct label. As new instances are labeled and
later verified, the system updates this parameter. Similar trust parameters can be defined for machine models,
potentially as a function of confidence scores or input features. Trust parameters feed into the linear aggregation
model for class probabilities and into routing decisions that favor higher-reliability actors for critical queries [45].

Optimization connects predictive and trust models with operational decisions. Given estimated error rates and
costs, the routing problem becomes an instance of stochastic or robust optimization. Consider a simplified setting
where each query can be processed either by a machine or by a single human expert. Let a binary variable indicate
the choice for query, and let the expected cost and error be denoted by parameters [46]. A linear objective that
trades off cost and error can be written as

Irql}qn Z (cé”uq + cf(l — uq)) + Al47| Z (ef]\/[uq + ef(l — ug)),
q q

where the parameter controls the relative importance of error. Constraints can enforce limits on the total number
of queries assigned to humans: [48]
Z(l —uq) < K,
q
where is the available human capacity. This yields a linear program in variables bounded between and, which can
be solved efficiently even for large numbers of queries.

In practice, routing decisions must be made online as queries arrive, rather than in a batch mode. One approach
is to approximate the solution of the batch optimization by a policy that depends only on local information about
each query and current utilization levels [49]. For example, the policy may compute a score combining expected
error reduction from human processing and incremental cost, then route to humans only if this score exceeds a
threshold and capacity remains. These thresholds can themselves be derived from offline linear optimization under
representative workloads, and then adjusted heuristically as conditions change.

Learning in the collective is further complicated by selection effects. Queries routed to humans provide labels
that can be used to train models, while queries resolved by machines do not provide direct ground truth. This
induces a bias in the training data, as machine-labeled instances differ systematically from human-labeled ones [50].
To mitigate this, the system can introduce exploration, occasionally routing queries to humans even when machine
confidence is high, to obtain unbiased performance estimates. Linear bandit models provide one framework for
analyzing such exploration—exploitation trade-offs. In a linear contextual bandit setting, each query is represented
by a feature vector, and the reward associated with routing decisions is assumed to be a linear function of these
features plus noise. The system maintains parameter estimates for the reward model and selects actions that
balance estimated reward and uncertainty, for example via upper confidence bounds [51].

Aggregating human and machine inputs also raises issues of disagreement and conflict resolution. When multiple
experts label the same query, the collective must decide how to combine their annotations. A linear opinion pooling
approach can assign weights to different experts and compute a weighted average of their class probability vectors.
If an expert has high estimated reliability on a domain, the corresponding weight is increased [52]. Machine outputs
can be included in the same pooling framework. The resulting aggregated distribution serves as the basis for final
decisions. Optimization over the weights can be guided by a loss function defined on historical data, leading to a
constrained least squares problem of the form

2
min g E <|53|yn7Cstn,cE whan,h,c> )
Wh,WM

n c h

subject to
war + th =1, wp,wp >0.
h
Here, the target indicates observed true labels, while the variables represent the machine and expert outputs. The
constraints ensure that the weights define a convex combination.

Temporal adaptation is a further dimension of learning in the collective [54]. As product lines, suppliers,
and regulatory requirements evolve, the distribution of queries changes. Drift detection mechanisms can monitor
statistics of model residuals or disagreement rates to identify shifts. When drift is detected, the system may trigger
retraining of predictive models or re-estimation of trust parameters with recent data given higher weight. Linear
models help in this context by providing interpretable parameters and constraints whose evolution over time can
be analyzed, offering insights into how the collective adapts to changing conditions [55].



6 Experimental Scenarios and System Behavior

While this paper does not rely on empirical datasets, it is useful to examine experimental scenarios to illustrate
how a hybrid human—machine collective behaves under different conditions. Consider three stylized scenarios
corresponding to distinct global parts environments. The first scenario involves high-volume, low-criticality parts,
where the primary objective is cost-efficient classification and matching. The second scenario involves medium-
volume, mixed-criticality parts, where both cost and accuracy are important [56]. The third scenario involves
low-volume, high-criticality parts, such as aerospace or medical components, where accuracy and traceability are
prioritized over cost.

In the high-volume scenario, machine learning models can be trained on large historical datasets, achieving
relatively low error rates on common classes and frequent match patterns. Human experts are primarily engaged
for rare classes or ambiguous descriptions. A linear routing policy may specify that queries with machine confidence
above a threshold are handled automatically, while those below are escalated to humans subject to capacity. The
optimization problem balances the marginal reduction in error from human intervention against the incremental
cost [57]. Because the overall error tolerance is relatively high, the capacity constraints on human experts are rarely
binding, and the collective operates in a regime where machine automation dominates.

In the mixed-criticality scenario, decisions are annotated with an application criticality score, reflecting the
potential consequences of a mismatch. The routing policy therefore depends on both machine confidence and
criticality. For low criticality queries, a lower machine confidence threshold may be acceptable, while high criticality
queries require human review unless machine confidence is very high [58]. This can be modeled by assigning different
effective costs to errors in different criticality bands. In the linear optimization formulation, this results in query-
specific error cost parameters. The solution tends to allocate scarce human capacity to high criticality queries with
moderate machine confidence, while allowing machines to handle low criticality queries more aggressively.

In the high-criticality scenario, human expertise plays a more central role [59]. Even when machine models have
high confidence, the system may still require human confirmation or a second independent opinion. Linear models
can represent these policies through constraints that enforce multiple independent annotations for certain classes
of queries. For example, a constraint might require that for safety-critical classes, the sum of routing variables to
the machine-only pathway is zero, ensuring that every query receives human attention. Optimization then focuses
on distributing queries among experts in a way that respects capacity and domain specialization while achieving
timely processing [60].

Beyond routing, matching decisions in these scenarios reflect different trade-offs. In high-volume, low-criticality
settings, the matching optimization may allow a small fraction of uncertain matches, relying on downstream
processes to detect and correct issues at minimal cost. The objective emphasizes coverage, aiming to maximize
the number of usable matches. In high-criticality settings, the optimization incorporates strict constraints on
acceptable risk, limiting matches to pairs with strong evidence from both machine similarity scores and human
confirmation [61]. The objective is then closer to maximizing reliability under coverage constraints.

Sensitivity analyses can be conducted at the level of the linear models to understand system behavior. For
instance, one can examine how changes in human capacity influence overall error rates and costs by solving the
routing optimization for different values of the capacity parameter. Similarly, one can analyze how varying trust
weight parameters in the aggregation model affects final classification accuracy in synthetic experiments [62]. These
analyses provide insight into the robustness of the collective to changes in resource availability and expertise quality.

Another aspect of system behavior involves temporal dynamics. Suppose that model performance degrades due
to drift in the distribution of parts, leading to increased disagreement between machine predictions and human
annotations. Monitoring the rate of disagreements and the residuals of the aggregation model can reveal this
degradation [63]. A simple threshold rule might trigger retraining when the mean squared deviation between
human and machine outputs exceeds a certain level. In a linear framework, this can be expressed in terms of

monitoring statistics such as
1 _\2
D= N ; ; (Sn,c - an,c) 3

where denotes the average human annotation across experts for instance. When the divergence measure crosses
a threshold, the system initiates model updates and potentially adjusts routing policies to rely more heavily on
humans during the transition [64].

Finally, system behavior must be evaluated not only with respect to classification and matching metrics, but
also in terms of broader operational outcomes. These include processing latency, expert workload distribution,
and fairness among suppliers or regions. Linear models can incorporate constraints reflecting service level targets,
such as maximum average response time or maximum imbalance in workload across expert groups. Optimization
solutions under these constraints provide candidate policies that can then be tested in simulation or pilot deploy-
ments [65]. Through iterative refinement, the collective can converge to a configuration that balances accuracy,
cost, responsiveness, and equity across stakeholders.
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7 Conclusion

Hybrid human—machine collectives offer a way to organize global parts classification and matching processes that
balances the strengths and limitations of humans and automated systems. In environments where data is hetero-
geneous, incomplete, and evolving, and where the consequences of mismatches can vary from minor inconvenience
to significant safety risks, such collectives provide a flexible structure for allocating tasks, aggregating information,
and adapting over time. This paper has treated these collectives as decision systems operating under constraints,
emphasizing linear modeling and optimization as tools for representing routing, trust, and matching decisions [66].

The analysis began by situating classification and matching within global parts ecosystems, where multiple
catalogs, suppliers, and regulatory frameworks interact. Within this context, the architecture of a hybrid collective
was described in terms of its main components: predictive models, human experts, and coordination mechanisms.
The collective’s operation was framed as a sequence of decisions about how to process incoming queries, when to
involve humans, and how to combine different sources of information. Attention was drawn to non-stationarity,
uncertainty, and disagreement as fundamental features of the environment [67].

Linear models were then introduced as a framework for capturing the main structural aspects of these decisions.
Variables representing routing choices, trust weights, and match indicators were used to formulate optimization
problems for classification aggregation, matching selection, and resource allocation. Constraints expressed capac-
ities, performance requirements, and consistency conditions. This linear perspective does not aim to capture all
subtleties of the underlying learning processes but provides a tractable layer on top of potentially complex predictive
models [68].

Learning processes in the collective were discussed in terms of predictive model training, trust estimation for
humans and machines, and policy optimization. The interplay between online routing decisions and the data
available for training was noted, along with the resulting selection effects and the need for exploration to obtain
unbiased performance estimates. Aggregation of human and machine inputs was considered using linear opinion
pooling, with optimization over weights to reflect domain-specific reliability. experimental scenarios illustrated
how the collective behaves under different combinations of volume and criticality [69]. These scenarios highlighted
trade-offs between cost and accuracy, and between automation and human involvement, showing how linear mod-
els can guide the design of routing and matching policies in these different regimes. Analytical tools such as
sensitivity analysis and drift monitoring were suggested as ways to understand and manage system behavior over
time. viewing hybrid human—machine collectives for global parts classification and matching through the lens of
linear modeling and optimization provides a structured way to describe and reason about their operation. The
formulations presented here focus on essential decision variables and constraints, offering a basis for further work
that can incorporate more detailed models of human behavior, richer representations of uncertainty, and empirical
evaluations on real-world datasets. As global parts ecosystems continue to evolve, such modeling frameworks may
support the development of systems that maintain consistent, adaptive, and resource-aware performance across
diverse and changing contexts [70].
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