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Abstract

Unmanned aircraft systems increasingly operate in airspace where reliable detect-and-avoid
capabilities are required to maintain separation from cooperative and non-cooperative traffic.
These systems are exposed to a wide spectrum of adverse weather phenomena that can al-
ter both sensor performance and aircraft dynamics. Practical deployment scenarios in lower
airspace, beyond-visual-line-of-sight corridors, and mixed-use terminal areas highlight the need
to characterize how rain, fog, low clouds, snow, icing, turbulence, and convective activity affect
detect-and-avoid decision quality, and how operational mitigations may be structured. This work
develops a modeling and simulation framework that couples stochastic representations of adverse
weather with parametric models of airborne and ground-based surveillance sensors, track filters,
and conflict resolution logics. Weather is represented as a spatially and temporally correlated
disturbance acting simultaneously on electromagnetic propagation, measurement quality, and ve-
hicle motion. The detect-and-avoid system is represented at the level of detection probabilities,
false alarm characteristics, state estimation error growth, and trajectory prediction uncertainty,
all conditioned on weather intensity and structure. Monte Carlo simulations are used to explore
conditions under which separation minima are approached or lost, with emphasis on parame-
ter regimes that are plausible for small and medium unmanned aircraft operating in layered
traffic. Results are interpreted in terms of performance envelopes and conservative triggers for
operational mitigations, such as adaptive minima, route structure adjustments, or temporary
restrictions. The study aims to provide a technically transparent basis for relating measurable
weather products to detect-and-avoid performance margins without overstating capability.

1 Introduction

Detect-and-avoid functionality for unmanned aircraft is intended to provide an acceptable level of risk with respect
to loss of separation or collision while enabling routine operations in airspace shared with crewed aircraft and other
unmanned systems [1]. As detect-and-avoid concepts mature, attention has shifted from nominal performance
demonstrations to systematic characterization under off-nominal and degraded conditions. Adverse weather is a
central contributor to such degradations. It modifies underlying aircraft dynamics, influences pilot in the loop or
supervisory control when present, and directly impacts the sensing and estimation elements that detect-and-avoid
systems rely upon [2]. These elements include cooperative surveillance such as automatic dependent surveillance
broadcast, non-cooperative primary radar, electro-optical and infrared sensors, acoustic sensing, and onboard or
networked traffic information sources.

A range of atmospheric phenomena can modify detect-and-avoid performance along multiple channels. Precip-
itation attenuates and scatters radio-frequency and optical signals [3]. Fog and low clouds affect visual-band and
infrared sensing, and can lead to persistent obscuration of traffic or terrain features. Turbulence and gust fronts
introduce high-frequency perturbations in aircraft motion, affecting both the host unmanned aircraft and nearby
traffic, thereby coupling weather into the relative state dynamics driving conflict detection algorithms. Icing alters
aerodynamic characteristics, navigation system reliability, and achievable maneuvering capability, which in turn
influences the feasibility of proposed resolution trajectories. Strong convection and embedded cells can create spa-
tially heterogeneous regions in which detect-and-avoid performance varies significantly along a single flight path.
[4]



Existing detect-and-avoid evaluations often assume standardized sensor characteristics and relatively benign
atmospheric conditions, leading to performance estimates that may not generalize to operationally relevant weather
regimes. At the same time, weather-aware guidance and operational constraints are typically specified at a relatively
coarse granularity, often without explicit linkage to quantitative detect-and-avoid performance metrics. This creates
a gap between regulatory or operational prescriptions and the underlying technical behavior of detect-and-avoid
subsystems under realistic atmospheric disturbances [5]. A more direct coupling between measurable weather
parameters, sensor and estimator behavior, and conflict resolution logic is needed to support robust operational
envelopes.

This paper develops a technical framework to represent the interaction between adverse weather and detect-
and-avoid performance for unmanned aircraft in a neutral manner. The approach is built around three elements:
stochastic models of adverse weather fields and their impact on sensing and dynamics; analytical and semi-analytical
models of detection, tracking, and conflict prediction under degraded conditions; and a Monte Carlo simulation
architecture that samples weather, traffic, and system parameters to generate empirical distributions of key safety-
related metrics. The focus is on representing mechanisms and sensitivities rather than prescribing specific quan-
titative minima [6]. The framework is then used to identify operational mitigations expressed as constraints or
adaptations that are directly rooted in modeled relationships, such as dynamic limits on corridor usage, speed-
altitude combinations, or detect-and-avoid alerting thresholds as functions of filtered weather inputs.

Table 1: Representative weather mechanisms and their primary modeled effects
Weather Effect Impacted Element Modeled Outcome
Attenuation RF/optical sensing Reduced PD, higher noise

variance
Visibility loss EO/IR Shorter effective range,

missed intruders
Turbulence Dynamics Stochastic motion and covari-

ance growth

Table 2: Key model blocks linking weather inputs to detect-and-avoid behavior
Model Block Input from Weather Output to DAA
Random fields Intensity, correlation Local attenuation and wind

profiles
Sensor layer Indices θ PD(θ), σ2(θ)
Dynamics Wind, turbulence Disturbed trajectories and

envelopes

Table 3: Core elements of the Monte Carlo simulation framework
Simulation Element Description Purpose
Encounter set Sampled host and in-

truders
Represent diverse traffic ge-
ometries

Weather samples Realizations of fields Capture variability across
regimes

DAA policy Fixed mapping Evaluate alerts and maneu-
vers

2 Foundations of Weather-Sensitive Detect-and-Avoid Performance

Detect-and-avoid performance in unmanned aircraft operations can be framed as an emergent property of coupled
subsystems acting under environmental uncertainty. Before constructing detailed stochastic models, it is useful
to formalize how adverse weather feeds into safety-relevant metrics through sensing, estimation, control, and
traffic encounter geometry [7]. The central objects of interest are the random processes describing host and
intruder kinematics, the random fields describing weather, and the decision rules that map partial information into
avoidance actions. In this context, performance is characterized not by isolated sensor probabilities or deterministic
encounter outcomes, but by the induced distribution of minimum separation distances and associated alerting and
maneuvering timelines, conditioned on weather-dependent information quality. This section develops a system-
level formulation that links weather to detect-and-avoid behavior via abstract functional relationships and compact
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Table 4: Primary performance metrics used to interpret weather impacts
Metric Meaning Use in Study
PLOS(W ) Loss-of-separation

chance
Sensitivity of safety to
weather class

Alert rate Frequency of triggers Balance between responsive-
ness and burden

Lead time Margin before conflict Feasibility under degraded
performance

Table 5: Representative operational mitigations grounded in modeled sensitivities
Mitigation Type Mechanism Modeled Basis
Adaptive minima Adjust dmin with θ Reflects uncertainty growth

and envelopes
Sensor conditions Modality requirements Triggered by degradation in-

dicators
Traffic measures Corridors, caps Reduce encounter complexity

in severe regions

mathematical structures [8]. The aim is to expose dependencies, rather than to assign fixed threshold values, and
thus to provide a neutral foundation for subsequent modeling and simulation.

Consider a host unmanned aircraft H and one or more intruders Ij within a finite region of airspace. Let xh(t)
and xj(t) denote their states, including position and velocity components. For a given intruder, define the joint
state

z(t) =

(
xh(t)
xj(t)

)
.

The relative state is r(t) = rj(t) = pj(t)−ph(t), with ph(t) and pj(t) the position vectors. Weather is represented by
a random element W summarizing relevant atmospheric variables over the spatial-temporal domain of interest. In
a reduced description, W is captured through indices such as attenuation level, turbulence intensity, icing potential,
and visibility category, acknowledging that each index may itself be derived from an underlying random field [9].
The detect-and-avoid system observes z(t) only through measurements whose distribution depends on both z(t)
and W , and issues resolution commands that must remain consistent with weather-modified vehicle capabilities.

From a system perspective, detect-and-avoid can be described as a mapping from the history of weather-
conditioned observations to a sequence of binary or graded decisions regarding alerting and maneuver execution.
Let Y0:t denote the measurement history up to time t, and let U0:t denote the control history for the host. The
detect-and-avoid policy is an abstract function π such that [10]

U0:t = π(Y0:t,W
∗)

where W ∗ represents the weather information available to the system or operator, which may be a filtered or
coarsely classified version of the true W . Even when weather products are external, such as ground-based radar or
numerical forecasts, they effectively enter into the decision logic and thus must be included in the information set.
Under this construction, performance is evaluated over the joint distribution of (z(t),W, Y0:t) induced by encounter
models, weather models, and policy π. The presence of adverse weather alters this distribution through three
channels: it modifies the dynamics of z(t), it alters the measurement process that forms Y0:t, and it changes the
feasible set of controls contained in U0:t.

A central safety-related quantity is the probability of loss of separation or collision over an encounter horizon.
Let Dmin be the minimum Euclidean distance between host and intruder during the considered interval. A generic
loss-of-separation event is {Dmin ≤ dmin}, where dmin encodes the protected volume radius. For a given policy π,
define

PLOS(W ) = P
(
Dmin ≤ dmin

∣∣W )
.

This conditional probability expresses how likely a loss of separation is under a specific weather realization or
weather class [11]. The marginal risk over a distribution of weather conditions with density fW (w) is

R =

∫
PLOS(w)fW (w) dw.

In practice, neither PLOS(w) nor fW (w) is exactly known, but this representation clarifies that detect-and-avoid
performance in adverse weather cannot be decoupled from the statistics of environmental exposure. The modeling
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Table 6: Synthesis of design insights emerging from the framework
Design Insight Source Implication
Weather as input Stochastic modeling DAA tuning tied to measur-

able indices
Model trans-
parency

Structured relations Supports cautious, revisable
envelopes

task is to approximate PLOS(w) through mechanistic descriptions of sensors, estimators, and maneuvers as functions
of w, then to explore how operational mitigations may reshape R by modifying exposure, policy, or both.

Weather-sensitive detect-and-avoid assessment must also account for the balance between sufficient alerting
and excessive alerting. Let A(W ) denote the rate or probability of unnecessary alerts (for example, alerts issued
when Dmin > dmin would have been maintained without intervention). Similarly, let T (W ) characterize the
distribution of alert lead times under weather condition W , relative to the earliest time at which feasible avoidance
remains available given degraded maneuverability. A minimal performance representation involves the triplet
(PLOS(W ), A(W ), T (W )). These functions depend on the detailed internal structure of π and the degradation of
sensing and actuation with weather, but they provide a conceptually compact set of axes along which weather-
induced changes can be understood [12]. Operational mitigations, when formulated analytically, can be viewed as
controlled transformations of π or of the operating region in the space of W that alter these axes within specified
bounds.

To establish a concrete link between weather and sensing, consider a generic measurement process for a single
sensor modality. Let the ideal measurement of relative position be h(r(t)) [13]. Under adverse weather with index
θ, the realized measurement at time tk is

yk = h(r(tk)) + ϵk(θ)

with probability PD(θ), and no measurement with probability 1−PD(θ). Here ϵk(θ) is zero-mean noise with variance
σ2(θ). This stylized formulation isolates two effects: a reduction in observation frequency as detections are missed
more often at higher θ, and a deterioration in the quality of available data. Both are monotone non-decreasing
functions of adverse weather intensity in many physical scenarios. For example,

PD(θ) = exp(−βθ)[14]

and
σ2(θ) = σ2

0(1 + γθ)

with β, γ ≥ 0 provide an analytically manageable representation. While simple, these functions suffice to demon-
strate how weather propagates into estimation error growth and thus into conservative conflict detection.

The estimation process forms an internal representation of relative state r̂(t) and associated uncertainty, which
together drive conflict logic. In a linearized setting with state transition matrix F and process noise covariance
Q, the error covariance P (t) evolves through alternating prediction and update steps, with updates contingent
on successful detections [15]. Adverse weather increases the expected prediction interval between updates and
inflates measurement noise, both of which increase trP (t). Under moderate conditions, this primarily leads to
more conservative alerts as conflict logic reacts to enlarged uncertainty sets. Under more severe conditions where
detections become sporadic and uncertainty grows substantially, conflict logic may oscillate between delayed alerts
and extended periods without reliable tracks, potentially raising both PLOS(W ) and A(W ). The same weather
realization thus influences safety risk and operational burden through a common mechanism: degradation of the
internal state estimate.

Vehicle performance limits under weather introduce an additional coupling. Let the host lateral and vertical
maneuver envelopes be described by bounds on achievable accelerations and climb or descent rates [16]. Under
adverse conditions characterized by index θ, these bounds may be modeled as

amax(θ) = a0(1− kaθ)

vclimb(θ) = v0(1− kvθ)

for non-negative coefficients ka, kv and θ constrained so that the right-hand sides remain positive. These expres-
sions, while idealized, reflect reductions in margins due to turbulence, icing, and contaminated lifting surfaces.
When conflict detection triggers an avoidance maneuver, the feasibility of maintaining separation depends on these
degraded bounds [17]. For a given alert lead time ∆t, the reachable set of relative states that can be steered
away from the protected volume shrinks with increasing θ. Consequently, the same alerting logic may yield an
acceptable PLOS(W ) in benign weather but become insufficient under more restrictive envelopes, illustrating why
weather-conditioned performance cannot be inferred solely from fair-weather validation.
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Encounter modeling interacts with weather in ways that can be structurally represented without imposing
specific traffic densities. Let Ξ denote the set of encounter parameters, including initial positions, velocities,
headings, and any intent structure. Assume a joint density fΞ,W (ξ, w) describing how encounter geometries and
weather co-occur. For example, certain adverse weather regimes may correlate with particular routing practices or
with reduced densities in some regions and increased densities in others [18]. The probability of loss of separation
under policy π can then be written abstractly as

PLOS =

∫
P
(
Dmin ≤ dmin

∣∣ ξ, w, π)fΞ,W (ξ, w) dξ dw.

This expression underscores that detect-and-avoid performance in adverse weather is a joint property of systems,
environment, and operational patterns. Even when weather degrades sensing, changes in encounter distributions
induced by conservative operational choices may reduce overall risk, while in other cases traffic compression or
rerouting around weather may increase interaction densities and partially offset system-level gains. [19]

To guide operational mitigations without embedding prescriptive thresholds, a scalar performance index can be
defined as a function of the key quantities associated with a given policy and weather class. One illustrative index
is

J = αR+ ηĀ+ ρC̄

where R is the overall loss-of-separation probability, Ā is a normalized measure of unnecessary alerts, C̄ is a
measure of control effort or deviation from nominal trajectories, and α, η, ρ are non-negative weighting coefficients
reflecting neutral trade-offs between safety, operational stability, and efficiency. This index does not assert any
particular acceptable value but serves as a compact representation for comparing alternative policies or mitigation
strategies under varying distributions of W [20]. For instance, enabling weather-adaptive alert thresholds changes
π, thereby modifying (R, Ā, C̄) and hence J . The modeling and simulation approach described in other sections
can be interpreted as an attempt to approximate these components of J in a manner consistent with mechanistic
understanding of weather impacts.

Crucially, the structure outlined here recognizes imperfect weather information. The detect-and-avoid policy in
practice does not condition on the true W but on some observation or classification W ∗. This leads to situations
in which the system applies mitigation strategies tuned to an estimated weather class that may not fully match
the local microphysical conditions affecting sensing and dynamics. The relationship between W and W ∗ can be
represented probabilistically via a confusion matrix or conditional density, and this representation can be embedded
into the performance integrals. The result is that even well-designed weather-adaptive strategies will exhibit residual
mismatch-driven effects, which should be reflected in modeled distributions of PLOS(W ) and A(W ) rather than
being neglected.

Within this foundational view, adverse weather does not appear merely as a binary constraint that either permits
or prohibits unmanned aircraft operations [21]. Instead, it enters as a quantitative modifier of the information
structure, maneuver envelope, and encounter statistics that together determine detect-and-avoid outcomes. A
neutral technical treatment emphasizes the sensitivity of those outcomes to the chosen abstractions of weather,
the fidelity of sensor and dynamics models, and the realism of encounter assumptions. The subsequent modeling
choices, including simple parametric forms for detection probabilities and performance degradation, are selected
for analytical tractability and interpretability, not as definitive characterizations of specific systems [22]. This
structured perspective supports the later development of stochastic weather fields, sensor models, Monte Carlo
simulations, and candidate operational mitigations that are explicitly traceable to identified mechanisms rather
than to implicit or ad hoc assumptions.

3 Adverse Weather Phenomena and Detect-and-Avoid Architecture

Detect-and-avoid performance is conditioned by both the physical environment and the internal architecture of
sensing, estimation, and decision subsystems. Adverse weather acts through several partially coupled mechanisms.
First, it modifies electromagnetic propagation through attenuation, scattering, refraction, and depolarization [23].
Second, it perturbs platform motion through turbulence, wind shear, and convective updrafts or downdrafts. Third,
it alters environmental clutter, including hydrometeors and background radiance, affecting detection of low-contrast
or small targets. A technical description of these mechanisms provides the basis for subsequent mathematical
modeling. [24]

For radio-frequency sensors, precipitation and cloud liquid water can be represented by an equivalent specific
attenuation coefficient that depends on frequency, hydrometeor size distribution, and polarization. For optical
systems, extinction due to aerosols, fog, or cloud droplets is described through visibility metrics that relate to
the extinction coefficient governing contrast reduction. Infrared sensors are affected by both extinction and ther-
mal emission from clouds and hydrometeors, which modify the apparent radiance contrast between target and
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background [25]. Acoustic sensing, when applicable for low-altitude unmanned aircraft, is influenced by wind,
turbulence, and precipitation noise that may reduce signal-to-noise ratios for propeller or engine signatures. These
mechanisms lead to reductions in effective detection range and increases in measurement noise variance for detected
targets.

The detect-and-avoid architecture typically integrates multiple sensing modalities. Cooperative surveillance
provides state information for appropriately equipped traffic using communication-based broadcast [26]. Non-
cooperative detection relies on onboard radar or optical sensors. Data association and state estimation modules
fuse measurements and propagate state estimates with associated covariance. Conflict detection logic evaluates
predicted relative trajectories to generate alerts, while resolution logic selects maneuvers or guidance modifications
consistent with aircraft performance and airspace constraints [27]. Adverse weather influences each of these blocks
differently. Cooperative surveillance using data links may be less sensitive to visibility but can be affected by
precipitation-induced attenuation or multipath. Primary radar is sensitive to attenuation and hydrometeor clutter.
Optical systems degrade significantly with reduced visibility [28]. Estimation performance is sensitive to the
frequency and quality of measurements, and conflict logic is sensitive to uncertainty growth driven by both sensing
and dynamics.

A structured representation of the architecture in the presence of weather-induced perturbations recognizes
that detect-and-avoid performance is not characterized by a single scalar metric but by a joint distribution of
detection probabilities, false alarm rates, track continuity, and conflict resolution feasibility, conditioned on specific
realizations of weather fields. The models developed in subsequent sections treat adverse weather as a random field
that drives parametric modifications in the sensing and dynamic models, allowing detect-and-avoid performance
to be represented quantitatively as a function of weather descriptors. [29]

4 Stochastic Modeling of Weather-Induced Disturbances

To capture spatially and temporally varying weather conditions, adverse weather is modeled as one or more
stochastic fields defined over four-dimensional space-time. Let x ∈ R3 denote position and t denote time. Consider
a scalar field w(x, t) representing a weather intensity variable, such as specific attenuation at a representative
frequency or an extinction coefficient relevant to visibility. For analytic tractability, w(x, t) can be decomposed as

w(x, t) = µw + w̃(x, t)

where µw is a mean level associated with a broad weather regime and w̃(x, t) is a zero-mean random fluctuation.
Assume w̃(x, t) is second-order stationary within a localized region and admit a covariance function

Cw(∆x,∆t) = E[w̃(x, t)w̃(x+∆x, t+∆t)].

A practical choice for Cw in this context is an exponential or Matérn form with specified spatial and temporal
correlation lengths, allowing the generation of weather realizations that vary smoothly over typical detect-and-avoid
engagement scales. The intensity of adverse weather, such as convective cores or dense fog layers, is captured by
the variance of w̃ and the chosen correlation parameters.

Wind and turbulence effects on aircraft dynamics are represented through a velocity disturbance field vw(x, t).
For a host unmanned aircraft with nominal velocity v0(t), the actual velocity becomes

v(t) = v0(t) + vw(x(t), t)

where vw is modeled using a spectral representation or shaping filter driven by white noise to match prescribed
turbulence intensities and scales. A similar disturbance applies to intruder traffic when subject to the same or
different weather realization [30]. This formulation leads to stochastic relative dynamics, with the relative position
r(t) between host and intruder influenced by correlated or uncorrelated wind fields, depending on separation
distance and weather structure.

The coupling between weather fields and sensing is modeled via parametric mappings from w(x, t) to sensor-
level degradation factors. For instance, an attenuation field a(x, t) along a line-of-sight segment between host and
intruder of length L can be approximated by [31]

a(t) =

∫ L

0

α(s, t) ds

with α derived from w. Under homogeneous conditions along the path, a(t) reduces to Lw(x∗, t) for some rep-
resentative point x∗, remaining well within the width constraints for the mathematical expression. The resulting
attenuation informs the effective signal-to-noise ratio of radio-frequency or optical measurements, which is subse-
quently mapped to detection probability and measurement noise variance. Through this construction, the stochastic
weather field becomes an exogenous process driving both dynamics and sensing models within the detect-and-avoid
system. [32]
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5 Sensor, Estimation, and Conflict Modeling Under Degradation

The detect-and-avoid system is abstracted as a sequence of transformations from underlying relative state to
measurements, to state estimates, and finally to conflict indicators and resolution trajectories. Under adverse
weather, each transformation is parameterized by weather-dependent quantities. Let the true relative state between
intruder and host be

z(t) = [33]

(
r(t)
ṙ(t)

)
where r(t) is relative position and ṙ(t) relative velocity in a chosen coordinate frame. Sensors produce measurements

yk = h(z(tk)) + ϵk

where h is the observation function and ϵk represents measurement noise and missed detections. Adverse weather
is modeled as modifying both the probability of receiving a measurement and the distribution of ϵk.

For a given sensor and weather intensity level θ derived from w(x, t), define a detection probability function
PD(θ,R) where R is range, and a false alarm rate λF (θ). A simplified parametric form, restricted in width, is [34]

PD(θ,R) = exp(−β1θR)

with β1 a non-negative parameter. Measurement noise variance σ2(θ) can be expressed as

σ2(θ) = σ2
0(1 + β2θ)

with σ2
0 the nominal variance and β2 a tuning parameter. These formulations maintain mathematically concise

expressions while capturing monotone degradation with increasing adverse weather intensity.
State estimation is performed, for example, via a linearized Kalman filter or an equivalent Bayesian estimator.

Let ẑ(t) denote the estimate and P (t) the estimation error covariance. Under intermittent observations with
weather-dependent detection probabilities, the covariance evolves as

P−
k+1 = FP+

k F⊤ +Q

P+
k+1 = (I −Kk+1H)P−

k+1

when a detection is present, with F the state transition matrix, Q the process noise covariance incorporating
dynamic disturbances, and H the linearized observation matrix [35]. The gain Kk+1 depends on σ2(θ). When
no detection occurs, the update step is skipped and the covariance remains P−

k+1. Weather thus drives both an
increase in effective process noise through turbulence and a reduction in update frequency and quality, leading to
growth in P (t) and increased uncertainty in relative state.

Conflict detection is based on predicting whether the relative state will enter a protected volume. For a
deterministic prediction horizon τ , a simple closest point of approach evaluation uses the predicted relative position
[36]

rτ = r(t) + τ ṙ(t)

under constant relative velocity assumption for illustration. A conflict is declared when ∥rτ∥ falls below a sepa-
ration threshold. Under uncertainty, the relative state is a random vector with covariance derived from P (t). A
conservative probabilistic conflict indicator may be defined by requiring that [37]

P (∥rτ∥ ≤ dmin) ≥ γ

for some probability level γ. In practice, this probability is approximated using Gaussian assumptions on rτ with
covariance inflated due to adverse weather. Higher weather severity θ increases uncertainty and can lead to earlier
or more frequent conflict alerts. Conversely, severe degradation may induce missed conflicts if detections are lost,
illustrating the need to jointly characterize probabilities of late or missed alerts and probabilities of unnecessary
alerts as functions of weather.

Resolution generation considers candidate maneuvers u(t) constrained by host unmanned aircraft performance,
which may be altered by icing or turbulence [38]. Let a simplified lateral acceleration bound under weather condition
θ be

amax(θ) = a0(1− β3θ)

with a0 nominal capability and β3θ < 1. Reduced maneuverability shrinks the reachable set of trajectories that
maintain separation once an alert is issued. Integrating sensor degradation and maneuver constraints provides a
consistent view of detect-and-avoid performance under weather, relating detection opportunities, estimation error,
and feasible conflict resolutions. [39]
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6 Monte Carlo Simulation Framework and Performance Metrics

To explore detect-and-avoid behavior across weather regimes and operational geometries, a Monte Carlo simulation
framework is constructed around the models introduced above. Each simulation trial draws a realization of the
weather field, traffic configuration, and system parameter set, then propagates the coupled dynamics of host
aircraft, intruders, sensors, estimators, and conflict logic. This produces empirical distributions of performance
metrics without assuming a single deterministic outcome for any given condition.

For each trial, the host flight plan is specified as a nominal trajectory segment [40]. Intruder trajectories
are sampled from distributions over initial positions, headings, speeds, and vertical profiles consistent with the
relevant airspace. The stochastic weather field w(x, t) is instantiated using a spectral or covariance-based generator,
ensuring correlation lengths compatible with the scale of detect-and-avoid encounters. The wind disturbance
vw(x, t) is jointly sampled such that its statistical properties match the adverse weather intensity class under
consideration. These realizations determine the time-varying attenuation, visibility, and turbulence that act on
sensing and dynamics. [41]

Sensor measurement processes are simulated by drawing random detections conditioned on PD(θ,R) and su-
perimposing noise with variance σ2(θ) on range, bearing, or other measurement components. False alarms are
generated according to a Poisson process with rate λF (θ). The resulting measurements are processed by the es-
timation algorithm, which updates ẑ(t) and P (t) over time. The conflict detection logic evaluates probabilistic
conflict indicators at each decision step. When a threshold is exceeded, a resolution maneuver is synthesized within
the bounds of amax(θ) and any additional operational constraints.

Performance metrics are defined to avoid overstatement while capturing essential aspects of detect-and-avoid
behavior. One metric is the probability that the minimum separation between host and any intruder remains above
the protected volume radius given the presence of adverse weather. Another metric is the conditional probability
of issuing a timely alert, defined as an alert that occurs with sufficient lead time for at least one feasible maneuver
within the degraded performance envelope [42]. A complementary metric is the rate of unnecessary alerts in which
the protected volume would not have been penetrated even in the absence of a resolution, driven by uncertainty
inflation or transient false tracks. Additional measures include track continuity statistics, such as average track life
and gap duration under varying weather intensities.

The Monte Carlo construction supports systematic variation of weather parameters [43]. For example, one
can define discrete weather classes indexed by θi associated with increasing attenuation or turbulence levels, and
evaluate the empirical mapping from θi to loss-of-separation probability, alert lead time distributions, and alert
frequency. It is also possible to vary sensor configurations to examine the effect of redundancy. When multiple
sensors are present, joint detection probability models combine modality-specific PD functions. The framework
thereby exposes interactions where one sensor class maintains partial performance under conditions that strongly
degrade another, as in the case of radio-frequency surveillance complementing impaired optical systems in low
visibility.

By treating weather as a primary exogenous input, the simulation results can be organized as weather-
conditioned performance envelopes [44]. For each weather class, and for each nominal operational scenario, empirical
confidence bounds on key metrics are computed. These bounds are interpreted as technical inputs to operational
mitigations rather than as definitive regulatory limits, acknowledging that underlying models and parameterizations
are subject to uncertainty and that additional validation would be needed for specific systems.

7 Weather-Conditioned Operational Mitigation Strategies

Given quantitative relationships between weather intensity and detect-and-avoid performance, operational mitiga-
tions can be defined that adjust how unmanned aircraft are permitted or configured to operate in specific adverse
conditions. Rather than treating weather exclusions as static binary constraints, the intent is to articulate struc-
tured adaptations whose logic follows from the underlying models without overstating robustness or risk reduction.
[45]

One class of mitigations involves weather-conditioned separation buffers. Suppose simulation results indicate
that estimation uncertainty and maneuverability degradation under a given θ increase the probability of loss of
separation if nominal thresholds are maintained. An operational response is to increase minimum separation
distances or alerting thresholds in proportion to weather-induced uncertainty growth [46]. In technical terms, a
mapping from weather index θ to protected volume radius dmin(θ) can be defined such that, for each class, the
modeled probability of loss of separation remains within an agreed tolerance. This adaptation is implemented at
the level of detect-and-avoid logic by adjusting its trigger criteria based on filtered weather inputs, provided such
adjustments remain within system design constraints and are communicated to relevant stakeholders.

Another mitigation involves restrictions on reliance on particular sensing modalities when their performance
is strongly weather-dependent. For example, in conditions with high extinction, onboard electro-optical sensing
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for non-cooperative detection may contribute minimally to effective detect-and-avoid performance. In such cases,
operational policies may specify that beyond-visual-line-of-sight operations in certain volumes require the presence
and integrity of less weather-sensitive surveillance sources, or impose altitude and route constraints that preserve
separation given reduced detection range [47]. The modeling framework allows one to identify weather regimes
in which single-modality detect-and-avoid becomes insufficient for maintaining the desired performance envelope,
suggesting when redundancy is operationally necessary.

Traffic flow management measures constitute another category of mitigations. Under strongly heterogeneous
weather fields, detect-and-avoid performance may vary markedly over short spatial scales [48]. Defining corridors
that avoid regions of severe attenuation or turbulence, or temporarily limiting traffic density in affected sectors,
directly reduces the number and complexity of potential encounters. In the modeling framework, such measures
correspond to conditioning Monte Carlo experiments on constrained geometries or reduced encounter rates, and
observing the resulting changes in performance metrics. Mapping these changes back to operationally meaningful
triggers involves defining thresholds in weather products that, when exceeded, initiate corridor reconfiguration,
altitude caps, or other traffic management actions. [49]

Mitigations can also target the detect-and-avoid algorithms themselves through configurable parameters. Alert-
ing thresholds, conflict look-ahead times, and track confirmation rules can be made weather-aware within defined
limits. For example, in moderate turbulence conditions where state estimation uncertainty grows more rapidly,
extending look-ahead time and reducing the probability threshold for declaring potential conflict can counteract
increased uncertainty, at the cost of higher alert rates. The modeling structure quantifies this trade, allowing
an operator or certifying entity to select parameter schedules that maintain a balance between timely alerts and
manageable false alarms for each weather class. [50]

These strategies remain conditional on the assumptions and abstractions of the models and simulations. They
are not asserted as universally sufficient but as structurally aligned with the observed sensitivities of detect-and-
avoid performance to adverse weather. Their usefulness depends on accurate and timely weather characterization,
reliable integration of weather indicators into detect-and-avoid and operational decision-making processes, and
continuous reassessment as more empirical data from real operations becomes available. [51]

8 Conclusion

This paper has presented a technical framework for examining the impact of adverse weather on unmanned aircraft
detect-and-avoid performance through combined modeling, simulation, and operationally oriented interpretation.
Adverse weather phenomena were treated as stochastic fields that influence both sensor performance and vehicle
dynamics. Within this representation, detect-and-avoid systems were modeled in terms of detection probabilities,
false alarm characteristics, state estimation processes, and conflict detection and resolution logic, all parameterized
by weather intensity indicators. Concise mathematical expressions were used to connect weather variables to
sensing degradation and maneuverability limits, enabling tractable propagation of weather effects into detect-and-
avoid metrics. [52]

A Monte Carlo simulation architecture was outlined to generate empirical distributions of safety-relevant quan-
tities under diverse weather and traffic conditions. By systematically varying weather parameters and system
configurations, the framework supports the construction of weather-conditioned performance envelopes that iden-
tify parameter regimes in which detect-and-avoid capabilities are relatively robust and regimes in which they are
significantly weakened. Emphasis was placed on maintaining a neutral interpretation of these envelopes, viewing
them as tools for understanding sensitivities rather than as definitive certification standards. [53]

Based on the modeled relationships, several classes of operational mitigations were discussed, including weather-
dependent separation buffers, modality-specific constraints, traffic flow adjustments, and limited algorithmic adap-
tations. These mitigations are framed as structurally consistent responses to quantified degradations rather than as
comprehensive solutions. The overall approach underscores that integrating weather considerations into detect-and-
avoid design and operation calls for explicit mappings from measurable atmospheric conditions to detect-and-avoid
performance, supported by transparent models and simulations. Such mappings can assist in shaping cautious,
evidence-informed operational envelopes for unmanned aircraft in the presence of adverse weather, while leaving
room for refinement as more detailed system data and validation studies become available. [54]
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using drones: A case study with spodoptera exigua (hübner) (lepidoptera: Noctuidae) in soybean fields.,”
Insects, vol. 14, no. 6, pp. 555–555, Jun. 15, 2023. doi: 10.3390/insects14060555

[19] Y. Zheng, C. Domier, M. Gonzalez, N. C. Luhmann, and D. Gamzina, “Underground imaging by sub-terahertz
radiation,” Electronics, vol. 10, no. 21, pp. 2694–, Nov. 4, 2021. doi: 10.3390/electronics10212694

[20] B. K. Gullett, J. Aurell, W. J. Mitchell, and J. Richardson, “Use of an unmanned aircraft system to quantify
no x emissions from a natural gas boiler,” Atmospheric measurement techniques, vol. 14, no. 2, pp. 975–981,
Feb. 9, 2021. doi: 10.5194/amt-14-975-2021

[21] C. Zhang and J. M. Kovacs, “The application of small unmanned aerial systems for precision agriculture: A
review,” Precision Agriculture, vol. 13, no. 6, pp. 693–712, Jul. 31, 2012. doi: 10.1007/s11119-012-9274-5

10

https://doi.org/10.1177/1756829318794004
https://doi.org/10.1007/s43154-021-00051-8
https://doi.org/10.3390/s20226585
https://doi.org/10.2478/sh-2019-0002
https://doi.org/10.1007/s10846-021-01422-1
https://doi.org/10.3233/jifs-169129
https://doi.org/10.3390/agronomy11010007
https://doi.org/10.3390/drones6040095
https://doi.org/10.3390/safety4040049
https://doi.org/10.3390/rs13173419
https://doi.org/10.1007/s11119-020-09764-w
https://doi.org/10.1134/s2075108711020088
https://doi.org/10.1007/s10846-019-01037-7
https://doi.org/10.1007/s10846-019-01037-7
https://doi.org/10.1007/s10846-017-0719-y
https://doi.org/10.3390/rs11161917
https://doi.org/10.3390/s21165649
https://doi.org/10.3390/insects14060555
https://doi.org/10.3390/electronics10212694
https://doi.org/10.5194/amt-14-975-2021
https://doi.org/10.1007/s11119-012-9274-5


[22] F.-L. Chiper, A. Martian, C. Vladeanu, I. Marghescu, R. Craciunescu, and O. Fratu, “Drone detection and
defense systems: Survey and a software-defined radio-based solution.,” Sensors (Basel, Switzerland), vol. 22,
no. 4, pp. 1453–1453, Feb. 14, 2022. doi: 10.3390/s22041453

[23] A. Barnas et al., “Evaluating behavioral responses of nesting lesser snow geese to unmanned aircraft surveys,”
Ecology and evolution, vol. 8, no. 2, pp. 1328–1338, Dec. 25, 2017. doi: 10.1002/ece3.3731

[24] M. S. Adams, Y. Bühler, and R. Fromm, “Multitemporal accuracy and precision assessment of unmanned
aerial system photogrammetry for slope-scale snow depth maps in alpine terrain,” Pure and Applied Geo-
physics, vol. 175, no. 9, pp. 3303–3324, Dec. 14, 2017. doi: 10.1007/s00024-017-1748-y

[25] J. K. Gillan, J. W. Karl, A. F. Elaksher, and M. C. Duniway, “Fine-resolution repeat topographic surveying of
dryland landscapes using uas-based structure-from-motion photogrammetry: Assessing accuracy and precision
against traditional ground-based erosion measurements,” Remote Sensing, vol. 9, no. 5, pp. 437–, May 3, 2017.
doi: 10.3390/rs9050437
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determination of citrus plant parameters.,” The Journal of Agriculture of the University of Puerto Rico,
vol. 103, no. 2, pp. 141–153, Jan. 1, 2019. doi: 10.46429/jaupr.v103i2.18226

[29] Q. Song, Y. Zeng, J. Xu, and S. Jin, “A survey of prototype and experiment for uav communications,” Science
China Information Sciences, vol. 64, no. 4, pp. 1–21, Feb. 26, 2021. doi: 10.1007/s11432-020-3030-2

[30] J. A. Marshall, R. B. Anderson, W.-Y. Chien, E. N. Johnson, and A. L’Afflitto, “A guidance system for
tactical autonomous unmanned aerial vehicles,” Journal of Intelligent & Robotic Systems, vol. 103, no. 4,
Nov. 25, 2021. doi: 10.1007/s10846-021-01526-8
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